BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 33546421)

  • 1. Targeting Redox Metabolism in Pancreatic Cancer.
    Abdel Hadi N; Reyes-Castellanos G; Carrier A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells.
    Liang C; Shi S; Liu M; Qin Y; Meng Q; Hua J; Ji S; Zhang Y; Yang J; Xu J; Ni Q; Li M; Yu X
    Cancer Res; 2019 Jan; 79(1):133-145. PubMed ID: 30355620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity.
    Rashida Gnanaprakasam JN; Wu R; Wang R
    Front Immunol; 2018; 9():1075. PubMed ID: 29868027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation.
    Jeong SM; Hwang S; Seong RH
    Biochem Biophys Res Commun; 2016 Mar; 471(3):373-9. PubMed ID: 26869514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.
    Zhang L; Li J; Zong L; Chen X; Chen K; Jiang Z; Nan L; Li X; Li W; Shan T; Ma Q; Ma Z
    Oxid Med Cell Longev; 2016; 2016():1616781. PubMed ID: 26881012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma.
    Kuang Y; Sechi M; Nurra S; Ljungman M; Neamati N
    J Med Chem; 2018 Feb; 61(4):1576-1594. PubMed ID: 29328656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Liver X Receptor Ligand GAC0001E5 Disrupts Glutamine Metabolism and Induces Oxidative Stress in Pancreatic Cancer Cells.
    Srivastava S; Widmann S; Ho C; Nguyen D; Nguyen A; Premaratne A; Gustafsson JÅ; Lin CY
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Reactive Oxygen Species by Fluorescent Probes in Pancreatic Cancer Cells.
    Luo Y; Wang D; Abbruzzese JL; Lu W
    Methods Mol Biol; 2019; 1882():207-219. PubMed ID: 30378057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage.
    Sotolongo K; Ghiso J; Rostagno A
    Alzheimers Res Ther; 2020 Jan; 12(1):13. PubMed ID: 31931869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic
    Plecitá-Hlavatá L; Engstová H; Ježek J; Holendová B; Tauber J; Petrásková L; Křen V; Ježek P
    Oxid Med Cell Longev; 2019; 2019():1826303. PubMed ID: 31249641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting reactive oxygen species in development and progression of pancreatic cancer.
    Durand N; Storz P
    Expert Rev Anticancer Ther; 2017 Jan; 17(1):19-31. PubMed ID: 27841037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia.
    Jitschin R; Hofmann AD; Bruns H; Giessl A; Bricks J; Berger J; Saul D; Eckart MJ; Mackensen A; Mougiakakos D
    Blood; 2014 Apr; 123(17):2663-72. PubMed ID: 24553174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Production of Reactive Oxygen Species as an Anticancer Strategy.
    Marioli-Sapsakou GK; Kourti M
    Anticancer Res; 2021 Dec; 41(12):5881-5902. PubMed ID: 34848443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.
    Song X; Zhu S; Xie Y; Liu J; Sun L; Zeng D; Wang P; Ma X; Kroemer G; Bartlett DL; Billiar TR; Lotze MT; Zeh HJ; Kang R; Tang D
    Gastroenterology; 2018 Apr; 154(5):1480-1493. PubMed ID: 29248440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells.
    Du J; Daniels DH; Asbury C; Venkataraman S; Liu J; Spitz DR; Oberley LW; Cullen JJ
    J Biol Chem; 2006 Dec; 281(49):37416-26. PubMed ID: 17040906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of cancer metabolism.
    DeBerardinis RJ; Chandel NS
    Sci Adv; 2016 May; 2(5):e1600200. PubMed ID: 27386546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Lopez M; Joseph J; Zielonka J; Dwinell MB
    Redox Biol; 2018 Apr; 14():316-327. PubMed ID: 29017115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.