These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 3354652)
1. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Meyer RA Am J Physiol; 1988 Apr; 254(4 Pt 1):C548-53. PubMed ID: 3354652 [TBL] [Abstract][Full Text] [Related]
2. Linear dependence of muscle phosphocreatine kinetics on total creatine content. Meyer RA Am J Physiol; 1989 Dec; 257(6 Pt 1):C1149-57. PubMed ID: 2610252 [TBL] [Abstract][Full Text] [Related]
3. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Paganini AT; Foley JM; Meyer RA Am J Physiol; 1997 Feb; 272(2 Pt 1):C501-10. PubMed ID: 9124293 [TBL] [Abstract][Full Text] [Related]
4. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780 [TBL] [Abstract][Full Text] [Related]
5. Regulation of oxygen consumption in fast- and slow-twitch muscle. Kushmerick MJ; Meyer RA; Brown TR Am J Physiol; 1992 Sep; 263(3 Pt 1):C598-606. PubMed ID: 1415510 [TBL] [Abstract][Full Text] [Related]
6. Stoichiometry of phosphocreatine and inorganic phosphate changes in rat skeletal muscle. Meyer RA; Adams GR NMR Biomed; 1990 Oct; 3(5):206-10. PubMed ID: 2288859 [TBL] [Abstract][Full Text] [Related]
7. Decreased ATP cost of isometric contractions in ATP-depleted rat fast-twitch muscle. Foley JM; Harkema SJ; Meyer RA Am J Physiol; 1991 Nov; 261(5 Pt 1):C872-81. PubMed ID: 1951672 [TBL] [Abstract][Full Text] [Related]
8. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Roman BB; Meyer RA; Wiseman RW Am J Physiol Cell Physiol; 2002 Dec; 283(6):C1776-83. PubMed ID: 12419710 [TBL] [Abstract][Full Text] [Related]
9. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Shoubridge EA; Radda GK Am J Physiol; 1987 May; 252(5 Pt 1):C532-42. PubMed ID: 3578505 [TBL] [Abstract][Full Text] [Related]
10. Separate measures of ATP utilization and recovery in human skeletal muscle. Blei ML; Conley KE; Kushmerick MJ J Physiol; 1993 Jun; 465():203-22. PubMed ID: 8024651 [TBL] [Abstract][Full Text] [Related]
11. Testing models of respiratory control in skeletal muscle. Meyer RA; Foley JM Med Sci Sports Exerc; 1994 Jan; 26(1):52-7. PubMed ID: 8133739 [TBL] [Abstract][Full Text] [Related]
12. Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. Foley JM; Meyer RA NMR Biomed; 1993; 6(1):32-8. PubMed ID: 8457424 [TBL] [Abstract][Full Text] [Related]
13. First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. Mahler M J Gen Physiol; 1985 Jul; 86(1):135-65. PubMed ID: 4031824 [TBL] [Abstract][Full Text] [Related]
14. Free [ADP] and aerobic muscle work follow at least second order kinetics in rat gastrocnemius in vivo. Cieslar JH; Dobson GP J Biol Chem; 2000 Mar; 275(9):6129-34. PubMed ID: 10692403 [TBL] [Abstract][Full Text] [Related]
15. Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance. Kushmerick MJ; Meyer RA Am J Physiol; 1985 May; 248(5 Pt 1):C542-9. PubMed ID: 3993772 [TBL] [Abstract][Full Text] [Related]
16. Bioenergetic changes during contraction and recovery in diabetic rat skeletal muscle. Challiss RA; Vranic M; Radda GK Am J Physiol; 1989 Jan; 256(1 Pt 1):E129-37. PubMed ID: 2643336 [TBL] [Abstract][Full Text] [Related]