These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33547397)
21. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. de Leon RD; Tamaki H; Hodgson JA; Roy RR; Edgerton VR J Neurophysiol; 1999 Jul; 82(1):359-69. PubMed ID: 10400964 [TBL] [Abstract][Full Text] [Related]
22. Significance of peripheral feedback in the generation of stepping movements during epidural stimulation of the spinal cord. Musienko PE; Bogacheva IN; Gerasimenko YP Neurosci Behav Physiol; 2007 Feb; 37(2):181-90. PubMed ID: 17187210 [TBL] [Abstract][Full Text] [Related]
23. Propriospinal bypass of the serotonergic system that can facilitate stepping. Gerasimenko Y; Musienko P; Bogacheva I; Moshonkina T; Savochin A; Lavrov I; Roy RR; Edgerton VR J Neurosci; 2009 Apr; 29(17):5681-9. PubMed ID: 19403834 [TBL] [Abstract][Full Text] [Related]
24. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry. Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717 [TBL] [Abstract][Full Text] [Related]
25. Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Lavrov I; Musienko PE; Selionov VA; Zdunowski S; Roy RR; Edgerton VR; Gerasimenko Y Brain Res; 2015 Mar; 1600():84-92. PubMed ID: 25446455 [TBL] [Abstract][Full Text] [Related]
26. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. Mari S; Lecomte CG; Merlet AN; Audet J; Yassine S; Eddaoui O; Genois G; Nadeau C; Harnie J; Rybak IA; Prilutsky BI; Frigon A J Physiol; 2024 May; 602(9):1987-2017. PubMed ID: 38593215 [TBL] [Abstract][Full Text] [Related]
27. Control of locomotion in the decerebrate cat. Whelan PJ Prog Neurobiol; 1996 Aug; 49(5):481-515. PubMed ID: 8895997 [TBL] [Abstract][Full Text] [Related]
28. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092 [TBL] [Abstract][Full Text] [Related]
29. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting. Fujiki S; Aoi S; Funato T; Sato Y; Tsuchiya K; Yanagihara D Sci Rep; 2018 Nov; 8(1):17341. PubMed ID: 30478405 [TBL] [Abstract][Full Text] [Related]
31. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. Jiang W; Drew T J Neurophysiol; 1996 Aug; 76(2):849-66. PubMed ID: 8871204 [TBL] [Abstract][Full Text] [Related]
32. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking. Trank TV; Chen C; Smith JL J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606 [TBL] [Abstract][Full Text] [Related]
33. [Mechanisms of stepping rhythm formation during epidural spinal cord stimulation in decerebrated and spinal cord transected cats]. Bogacheva IN; Nikitin OA; Musienko PE; Savokhin AA; Gerasimenko IuP Biofizika; 2009; 54(3):529-36. PubMed ID: 19569517 [TBL] [Abstract][Full Text] [Related]
34. Can the mammalian lumbar spinal cord learn a motor task? Hodgson JA; Roy RR; de Leon R; Dobkin B; Edgerton VR Med Sci Sports Exerc; 1994 Dec; 26(12):1491-7. PubMed ID: 7869884 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat. Carter MC; Smith JL J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394 [TBL] [Abstract][Full Text] [Related]
36. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. Noga BR; Kriellaars DJ; Jordan LM J Neurosci; 1991 Jun; 11(6):1691-700. PubMed ID: 2045881 [TBL] [Abstract][Full Text] [Related]
37. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. Bouyer LJ; Rossignol S J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535 [TBL] [Abstract][Full Text] [Related]
38. Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord. Gerasimenko YP; Lavrov IA; Bogacheva IN; Shcherbakova NA; Kucher VI; Musienko PE Neurosci Behav Physiol; 2005 Mar; 35(3):291-8. PubMed ID: 15875491 [TBL] [Abstract][Full Text] [Related]
39. Recovery of locomotion in cats after severe contusion of the low thoracic spinal cord. Delivet-Mongrain H; Dea M; Gossard JP; Rossignol S J Neurophysiol; 2020 Apr; 123(4):1504-1525. PubMed ID: 32101502 [TBL] [Abstract][Full Text] [Related]
40. Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats. Frigon A; Hurteau MF; Thibaudier Y; Leblond H; Telonio A; D'Angelo G J Neurosci; 2013 May; 33(19):8559-66. PubMed ID: 23658193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]