These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33547397)
41. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats. Yamaguchi T Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207 [TBL] [Abstract][Full Text] [Related]
42. Spinal cord stimulation-induced locomotion in the adult cat. Iwahara T; Atsuta Y; Garcia-Rill E; Skinner RD Brain Res Bull; 1992 Jan; 28(1):99-105. PubMed ID: 1540851 [TBL] [Abstract][Full Text] [Related]
43. Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. Carrier L; Brustein E; Rossignol S J Neurophysiol; 1997 Apr; 77(4):1979-93. PubMed ID: 9114249 [TBL] [Abstract][Full Text] [Related]
44. The modulation of locomotor speed is maintained following partial denervation of ankle extensors in spinal cats. Harnie J; Côté-Sarrazin C; Hurteau MF; Desrochers E; Doelman A; Amhis N; Frigon A J Neurophysiol; 2018 Sep; 120(3):1274-1285. PubMed ID: 29897865 [TBL] [Abstract][Full Text] [Related]
45. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds. Dambreville C; Labarre A; Thibaudier Y; Hurteau MF; Frigon A J Neurophysiol; 2015 Aug; 114(2):1119-28. PubMed ID: 26084910 [TBL] [Abstract][Full Text] [Related]
46. Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking. de Guzman CP; Roy RR; Hodgson JA; Edgerton VR Brain Res; 1991 Aug; 555(2):202-14. PubMed ID: 1933334 [TBL] [Abstract][Full Text] [Related]
47. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460 [TBL] [Abstract][Full Text] [Related]
48. The recovery of standing and locomotion after spinal cord injury does not require task-specific training. Harnie J; Doelman A; de Vette E; Audet J; Desrochers E; Gaudreault N; Frigon A Elife; 2019 Dec; 8():. PubMed ID: 31825306 [TBL] [Abstract][Full Text] [Related]
49. Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines. Dimiskovski M; Scheinfield R; Higgin D; Krupka A; Lemay MA J Neurosci Methods; 2017 Feb; 278():65-75. PubMed ID: 28069392 [TBL] [Abstract][Full Text] [Related]
50. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. Frigon A; Thibaudier Y; Hurteau MF Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423 [TBL] [Abstract][Full Text] [Related]
51. Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats. Norton JA; Mushahwar VK Ann N Y Acad Sci; 2010 Jun; 1198():10-20. PubMed ID: 20536916 [TBL] [Abstract][Full Text] [Related]
52. A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Yanagihara D; Udo M; Kondo I; Yoshida T Neurosci Res; 1993 Dec; 18(3):241-4. PubMed ID: 8127473 [TBL] [Abstract][Full Text] [Related]
53. Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. Barrière G; Leblond H; Provencher J; Rossignol S J Neurosci; 2008 Apr; 28(15):3976-87. PubMed ID: 18400897 [TBL] [Abstract][Full Text] [Related]
54. Development and characteristics of airstepping in chronic spinal cats. Giuliani CA; Smith JL J Neurosci; 1985 May; 5(5):1276-82. PubMed ID: 3998821 [TBL] [Abstract][Full Text] [Related]
55. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. Thibaudier Y; Frigon A J Neurophysiol; 2014 Oct; 112(8):2006-18. PubMed ID: 25057143 [TBL] [Abstract][Full Text] [Related]
56. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Forssberg H; Grillner S; Halbertsma J Acta Physiol Scand; 1980 Mar; 108(3):269-81. PubMed ID: 7376922 [TBL] [Abstract][Full Text] [Related]
57. Central pattern generators of the mammalian spinal cord. Frigon A Neuroscientist; 2012 Feb; 18(1):56-69. PubMed ID: 21518815 [TBL] [Abstract][Full Text] [Related]
58. Spinal control of muscle synergies for adult mammalian locomotion. Desrochers E; Harnie J; Doelman A; Hurteau MF; Frigon A J Physiol; 2019 Jan; 597(1):333-350. PubMed ID: 30334575 [TBL] [Abstract][Full Text] [Related]
59. Comparison of operation of spinal locomotor networks activated by supraspinal commands and by epidural stimulation of the spinal cord in cats. Musienko PE; Lyalka VF; Gorskii OV; Merkulyeva N; Gerasimenko YP; Deliagina TG; Zelenin PV J Physiol; 2020 Aug; 598(16):3459-3483. PubMed ID: 32445488 [TBL] [Abstract][Full Text] [Related]
60. Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats. Hiebert GW; Gorassini MA; Jiang W; Prochazka A; Pearson KG J Neurophysiol; 1994 Feb; 71(2):611-22. PubMed ID: 8176430 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]