BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1707 related articles for article (PubMed ID: 33547553)

  • 1. Use of radiomics based on
    Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R
    Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions.
    Kirienko M; Cozzi L; Rossi A; Voulaz E; Antunovic L; Fogliata A; Chiti A; Sollini M
    Eur J Nucl Med Mol Imaging; 2018 Sep; 45(10):1649-1660. PubMed ID: 29623375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An [
    Meng N; Feng P; Yu X; Wu Y; Fu F; Li Z; Luo Y; Tan H; Yuan J; Yang Y; Wang Z; Wang M
    Eur Radiol; 2024 Jan; 34(1):318-329. PubMed ID: 37530809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in
    Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X
    Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary study on the ability of the machine learning models based on
    Wang J; Zhou Y; Zhou J; Liu H; Li X
    Eur J Radiol; 2024 Jul; 176():111531. PubMed ID: 38820949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on
    Koyasu S; Nishio M; Isoda H; Nakamoto Y; Togashi K
    Ann Nucl Med; 2020 Jan; 34(1):49-57. PubMed ID: 31659591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning based on clinico-biological features integrated
    Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J
    Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histologic subtype classification of non-small cell lung cancer using PET/CT images.
    Han Y; Ma Y; Wu Z; Zhang F; Zheng D; Liu X; Tao L; Liang Z; Yang Z; Li X; Huang J; Guo X
    Eur J Nucl Med Mol Imaging; 2021 Feb; 48(2):350-360. PubMed ID: 32776232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions.
    Zhang R; Zhu L; Cai Z; Jiang W; Li J; Yang C; Yu C; Jiang B; Wang W; Xu W; Chai X; Zhang X; Tang Y
    Eur J Radiol; 2019 Dec; 121():108735. PubMed ID: 31733432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Cross-Combinations of Feature Selection and Machine-Learning Classification Methods Based on [
    Gómez OV; Herraiz JL; Udías JM; Haug A; Papp L; Cioni D; Neri E
    Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study.
    Eifer M; Pinian H; Klang E; Alhoubani Y; Kanana N; Tau N; Davidson T; Konen E; Catalano OA; Eshet Y; Domachevsky L
    Eur Radiol; 2022 Sep; 32(9):5921-5929. PubMed ID: 35385985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes.
    Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W
    Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Approach Using PET/CT-based Radiomics for Prediction of PD-L1 Expression in Non-small Cell Lung Cancer.
    Lim CH; Koh YW; Hyun SH; Lee SJ
    Anticancer Res; 2022 Dec; 42(12):5875-5884. PubMed ID: 36456151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics based on
    Ou X; Zhang J; Wang J; Pang F; Wang Y; Wei X; Ma X
    Cancer Med; 2020 Jan; 9(2):496-506. PubMed ID: 31769230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of COVID-19 based on the extracted radiomics features from chest CT images.
    Rezaeijo SM; Abedi-Firouzjah R; Ghorvei M; Sarnameh S
    J Xray Sci Technol; 2021; 29(2):229-243. PubMed ID: 33612539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting pathological highly invasive lung cancer from preoperative [
    Onozato Y; Iwata T; Uematsu Y; Shimizu D; Yamamoto T; Matsui Y; Ogawa K; Kuyama J; Sakairi Y; Kawakami E; Iizasa T; Yoshino I
    Eur J Nucl Med Mol Imaging; 2023 Feb; 50(3):715-726. PubMed ID: 36385219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT radiomics analysis of lung cancers: Differentiation of squamous cell carcinoma from adenocarcinoma, a correlative study with FDG uptake.
    Tomori Y; Yamashiro T; Tomita H; Tsubakimoto M; Ishigami K; Atsumi E; Murayama S
    Eur J Radiol; 2020 Jul; 128():109032. PubMed ID: 32361604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive monitoring of allograft rejection in a rat lung transplant model: Application of machine learning-based
    Tian D; Shiiya H; Takahashi M; Terasaki Y; Urushiyama H; Shinozaki-Ushiku A; Yan HJ; Sato M; Nakajima J
    J Heart Lung Transplant; 2022 Jun; 41(6):722-731. PubMed ID: 35430149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Value of multi-center
    Zuo Y; Liu L; Chang C; Yan H; Wang L; Sun D; Ruan M; Lei B; Xia X; Xie W; Song S; Huang G
    Med Phys; 2024 Jan; ():. PubMed ID: 38285641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm.
    Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H
    Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 86.