These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans. Olczak-Woltman H; Schollenberger M; Niemirowicz-Szczytt K J Appl Genet; 2009; 50(1):1-7. PubMed ID: 19193976 [TBL] [Abstract][Full Text] [Related]
5. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. Chen Q; Zhou S; Qu M; Yang Y; Chen Q; Meng X; Fan H Plant J; 2024 Jul; 119(1):332-347. PubMed ID: 38700955 [TBL] [Abstract][Full Text] [Related]
6. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. Lenk M; Wenig M; Bauer K; Hug F; Knappe C; Lange B; Timsy ; Häußler F; Mengel F; Dey S; Schäffner A; Vlot AC Mol Plant Microbe Interact; 2019 Oct; 32(10):1303-1313. PubMed ID: 31194615 [TBL] [Abstract][Full Text] [Related]
7. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. Li D; Liu R; Singh D; Yuan X; Kachroo P; Raina R New Phytol; 2020 Mar; 225(5):2108-2121. PubMed ID: 31622519 [TBL] [Abstract][Full Text] [Related]
8. Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii. Yu Y; Yu Y; Cui N; Ma L; Tao R; Ma Z; Meng X; Fan H Plant Physiol Biochem; 2022 Sep; 186():88-98. PubMed ID: 35830761 [TBL] [Abstract][Full Text] [Related]
9. Cucumis sativus CsbZIP90 suppresses Podosphaera xanthii resistance by modulating reactive oxygen species. Liu L; Ma L; Yu Y; Ma Z; Yin Y; Zhou S; Yu Y; Cui N; Meng X; Fan H Plant Sci; 2024 Feb; 339():111945. PubMed ID: 38061503 [TBL] [Abstract][Full Text] [Related]
10. Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity. Hartmann M; Zeier T; Bernsdorff F; Reichel-Deland V; Kim D; Hohmann M; Scholten N; Schuck S; Bräutigam A; Hölzel T; Ganter C; Zeier J Cell; 2018 Apr; 173(2):456-469.e16. PubMed ID: 29576453 [TBL] [Abstract][Full Text] [Related]
11. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. Wang Y; Schuck S; Wu J; Yang P; Döring AC; Zeier J; Tsuda K Plant Cell; 2018 Oct; 30(10):2480-2494. PubMed ID: 30228125 [TBL] [Abstract][Full Text] [Related]
12. Exogenous melatonin improves the resistance to cucumber bacterial angular leaf spot caused by Pseudomonas syringae pv. Lachrymans. Li L; Du C; Wang L; Lai M; Fan H Physiol Plant; 2022 May; 174(3):e13724. PubMed ID: 35611707 [TBL] [Abstract][Full Text] [Related]
13. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. Hartmann M; Kim D; Bernsdorff F; Ajami-Rashidi Z; Scholten N; Schreiber S; Zeier T; Schuck S; Reichel-Deland V; Zeier J Plant Physiol; 2017 May; 174(1):124-153. PubMed ID: 28330936 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Profiling of Cucumber ( Słomnicka R; Olczak-Woltman H; Sobczak M; Bartoszewski G Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919557 [TBL] [Abstract][Full Text] [Related]
15. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Návarová H; Bernsdorff F; Döring AC; Zeier J Plant Cell; 2012 Dec; 24(12):5123-41. PubMed ID: 23221596 [TBL] [Abstract][Full Text] [Related]
16. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Schnake A; Hartmann M; Schreiber S; Malik J; Brahmann L; Yildiz I; von Dahlen J; Rose LE; Schaffrath U; Zeier J J Exp Bot; 2020 Oct; 71(20):6444-6459. PubMed ID: 32725118 [TBL] [Abstract][Full Text] [Related]
17. Chen YC; Holmes EC; Rajniak J; Kim JG; Tang S; Fischer CR; Mudgett MB; Sattely ES Proc Natl Acad Sci U S A; 2018 May; 115(21):E4920-E4929. PubMed ID: 29735713 [TBL] [Abstract][Full Text] [Related]
18. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Yildiz I; Mantz M; Hartmann M; Zeier T; Kessel J; Thurow C; Gatz C; Petzsch P; Köhrer K; Zeier J Plant Physiol; 2021 Jul; 186(3):1679-1705. PubMed ID: 33871649 [TBL] [Abstract][Full Text] [Related]
19. Pipped at the Post: Pipecolic Acid Derivative Identified as SAR Regulator. Shan L; He P Cell; 2018 Apr; 173(2):286-287. PubMed ID: 29625046 [TBL] [Abstract][Full Text] [Related]
20. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. Pazarlar S; Cetinkaya N; Bor M; Kara RS J Exp Bot; 2020 Oct; 71(20):6638-6654. PubMed ID: 32822478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]