These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33547798)
1. Partial mycoheterotrophy is common among chlorophyllous plants with Paris-type arbuscular mycorrhiza. Giesemann P; Rasmussen HN; Gebauer G Ann Bot; 2021 Apr; 127(5):645-653. PubMed ID: 33547798 [TBL] [Abstract][Full Text] [Related]
2. Partial mycoheterotrophy in green plants forming Paris-type arbuscular mycorrhiza requires a thorough investigation. Murata-Kato S; Sato R; Abe S; Hashimoto Y; Yamagishi H; Yokoyama J; Tomimatsu H New Phytol; 2022 May; 234(4):1112-1118. PubMed ID: 35262951 [No Abstract] [Full Text] [Related]
3. Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Suetsugu K; Haraguchi TF; Tanabe AS; Tayasu I Mycorrhiza; 2021 Mar; 31(2):243-250. PubMed ID: 33150532 [TBL] [Abstract][Full Text] [Related]
4. Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. Giesemann P; Rasmussen HN; Liebel HT; Gebauer G New Phytol; 2020 May; 226(4):960-966. PubMed ID: 31837155 [No Abstract] [Full Text] [Related]
5. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Suetsugu K; Matsubayashi J; Ogawa NO; Murata S; Sato R; Tomimatsu H Oecologia; 2020 Apr; 192(4):929-937. PubMed ID: 32172377 [TBL] [Abstract][Full Text] [Related]
6. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. Perotto S; Balestrini R New Phytol; 2024 May; 242(4):1408-1416. PubMed ID: 37884478 [TBL] [Abstract][Full Text] [Related]
7. Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Motomura H; Selosse MA; Martos F; Kagawa A; Yukawa T Ann Bot; 2010 Oct; 106(4):573-81. PubMed ID: 20685727 [TBL] [Abstract][Full Text] [Related]
8. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. Perez-Lamarque B; Selosse MA; Öpik M; Morlon H; Martos F New Phytol; 2020 Jun; 226(6):1822-1835. PubMed ID: 32022272 [TBL] [Abstract][Full Text] [Related]
9. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. Hynson NA; Schiebold JM; Gebauer G Ann Bot; 2016 Sep; 118(3):467-79. PubMed ID: 27451987 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary histories and mycorrhizal associations of mycoheterotrophic plants dependent on saprotrophic fungi. Ogura-Tsujita Y; Yukawa T; Kinoshita A J Plant Res; 2021 Jan; 134(1):19-41. PubMed ID: 33417080 [TBL] [Abstract][Full Text] [Related]
11. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. Zahn FE; Jiang H; Lee YI; Gebauer G Ann Bot; 2024 Aug; 134(3):511-520. PubMed ID: 38912975 [TBL] [Abstract][Full Text] [Related]
12. Carbon and nitrogen gain during the growth of orchid seedlings in nature. Stöckel M; Těšitelová T; Jersáková J; Bidartondo MI; Gebauer G New Phytol; 2014 Apr; 202(2):606-615. PubMed ID: 24444001 [TBL] [Abstract][Full Text] [Related]
13. Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. Gomes SIF; Fortuna MA; Bascompte J; Merckx VSFT New Phytol; 2022 Sep; 235(5):2034-2045. PubMed ID: 35706373 [TBL] [Abstract][Full Text] [Related]
14. Mycoheterotrophic seedling growth of Gentiana zollingeri, a photosynthetic Gentianaceae plant species, in symbioses with arbuscular mycorrhizal fungi. Yamato M; Suzuki T; Matsumoto M; Shiraishi T; Yukawa T J Plant Res; 2021 Sep; 134(5):921-931. PubMed ID: 33993398 [TBL] [Abstract][Full Text] [Related]
15. Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Suetsugu K; Yamato M; Miura C; Yamaguchi K; Takahashi K; Ida Y; Shigenobu S; Kaminaka H Mol Ecol; 2017 Mar; 26(6):1652-1669. PubMed ID: 28099773 [TBL] [Abstract][Full Text] [Related]
16. Evidence for mycorrhizal cheating in Apostasia nipponica, an early-diverging member of the Orchidaceae. Suetsugu K; Matsubayashi J New Phytol; 2021 Feb; 229(4):2302-2310. PubMed ID: 33118174 [TBL] [Abstract][Full Text] [Related]
17. Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Ogura-Tsujita Y; Yokoyama J; Miyoshi K; Yukawa T Am J Bot; 2012 Jul; 99(7):1158-76. PubMed ID: 22763355 [TBL] [Abstract][Full Text] [Related]
18. 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. Merckx V; Stöckel M; Fleischmann A; Bruns TD; Gebauer G New Phytol; 2010 Oct; 188(2):590-6. PubMed ID: 20618915 [TBL] [Abstract][Full Text] [Related]
19. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Těšitelová T; Kotilínek M; Jersáková J; Joly FX; Košnar J; Tatarenko I; Selosse MA Mol Ecol; 2015 Mar; 24(5):1122-34. PubMed ID: 25612936 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia. Suetsugu K; Yamato M; Matsubayashi J; Tayasu I Mol Ecol; 2019 Sep; 28(18):4290-4299. PubMed ID: 31448451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]