These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33547940)

  • 1. How does curvature affect the free-energy barrier of stalk formation? Small vesicles vs apposing, planar membranes.
    Smirnova YG; Müller M
    Eur Biophys J; 2021 Mar; 50(2):253-264. PubMed ID: 33547940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins.
    Smirnova YG; Risselada HJ; Müller M
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2571-2576. PubMed ID: 30700547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration.
    Smirnova YG; Marrink SJ; Lipowsky R; Knecht V
    J Am Chem Soc; 2010 May; 132(19):6710-8. PubMed ID: 20411937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.
    Kawamoto S; Klein ML; Shinoda W
    J Chem Phys; 2015 Dec; 143(24):243112. PubMed ID: 26723597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses.
    Malinin VS; Lentz BR
    Biophys J; 2004 May; 86(5):2951-64. PubMed ID: 15111411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of free energy barriers to the fusion of small vesicles.
    Lee JY; Schick M
    Biophys J; 2008 Mar; 94(5):1699-706. PubMed ID: 18024495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.
    Mirjanian D; Dickey AN; Hoh JH; Woolf TB; Stevens MJ
    J Phys Chem B; 2010 Sep; 114(34):11061-8. PubMed ID: 20701307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory.
    Golani G; Schwarz US
    Biophys J; 2023 May; 122(10):1868-1882. PubMed ID: 37077047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy analysis along the stalk mechanism of membrane fusion.
    Kawamoto S; Shinoda W
    Soft Matter; 2014 May; 10(17):3048-54. PubMed ID: 24695575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects.
    Haque ME; Lentz BR
    Biochemistry; 2004 Mar; 43(12):3507-17. PubMed ID: 15035621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the energies of fusion on the intermembrane separation: optimal and constrained.
    Lee JY; Schick M
    J Chem Phys; 2007 Aug; 127(7):075102. PubMed ID: 17718633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition path from two apposed membranes to a stalk obtained by a combination of particle simulations and string method.
    Müller M; Smirnova YG; Marelli G; Fuhrmans M; Shi AC
    Phys Rev Lett; 2012 Jun; 108(22):228103. PubMed ID: 23003657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature.
    Tahir MA; Van Lehn RC; Choi SH; Alexander-Katz A
    Biochim Biophys Acta; 2016 Jun; 1858(6):1207-15. PubMed ID: 26828121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature.
    Lee DE; Lew MG; Woodbury DJ
    Chem Phys Lipids; 2013 Jan; 166():45-54. PubMed ID: 23200791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Gaussian curvature elastic energy of intermediates in membrane fusion.
    Siegel DP
    Biophys J; 2008 Dec; 95(11):5200-15. PubMed ID: 18805927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of a membrane fusion intermediate structure.
    Yang L; Huang HW
    Science; 2002 Sep; 297(5588):1877-9. PubMed ID: 12228719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stalk phase formation: effects of dehydration and saddle splay modulus.
    Kozlovsky Y; Efrat A; Siegel DP; Kozlov MM
    Biophys J; 2004 Oct; 87(4):2508-21. PubMed ID: 15454446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations of Curved Lipid Membranes.
    Larsen AH
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.