These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33547978)

  • 1. Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation.
    Huang L; Fang Q
    Biomed Microdevices; 2021 Feb; 23(1):11. PubMed ID: 33547978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy.
    Mansoorifar A; Koklu A; Sabuncu AC; Beskok A
    Electrophoresis; 2017 Jun; 38(11):1466-1474. PubMed ID: 28256738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip.
    Vaillier C; Honegger T; Kermarrec F; Gidrol X; Peyrade D
    PLoS One; 2014; 9(4):e95231. PubMed ID: 24736275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using dielectrophoretic spectra to identify and separate viable yeast cells.
    Bunthawin S; Srichan P; Jaruwongrungsee K; Ritchie RJ
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7647-7655. PubMed ID: 37815615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms.
    Kordzadeh-Kermani V; Ashrafizadeh SN; Madadelahi M
    Anal Chim Acta; 2024 Jun; 1310():342719. PubMed ID: 38811136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, automated measurement of dielectrophoretic forces using DEP-activated microwells.
    Broche LM; Hoettges KF; Ogin SL; Kass GE; Hughes MP
    Electrophoresis; 2011 Sep; 32(17):2393-9. PubMed ID: 21800330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label free and high-throughput discrimination of cells at a bipolar electrode array using the AC electrodynamics.
    Wu Y; Yue Y; Zhang H; Ma X; Li K; Zeng W; Wang S; Meng Y
    Anal Chim Acta; 2023 Oct; 1278():341701. PubMed ID: 37709447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes.
    Koklu A; Sabuncu AC; Beskok A
    Electrophoresis; 2017 Jun; 38(11):1458-1465. PubMed ID: 28130914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis.
    Zhao K; Larasati ; Duncker BP; Li D
    Anal Chem; 2019 May; 91(9):6304-6314. PubMed ID: 30977369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics.
    Matbaechi Ettehad H; Soltani Zarrin P; Hölzel R; Wenger C
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32429098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device.
    Zhu Z; Geng Y; Wang Y
    Methods Mol Biol; 2021; 2189():105-118. PubMed ID: 33180297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Modeling of a Device Combining Single-Cell Exposure to a Uniform Electrical Field and Simultaneous Characterization via Bioimpedance Spectroscopy.
    Bettenfeld R; Claudel J; Kourtiche D; Nadi M; Schlauder C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation.
    Huang L; Tu L; Zeng X; Mi L; Li X; Wang W
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Speed Single-Cell Dielectric Spectroscopy.
    Spencer D; Morgan H
    ACS Sens; 2020 Feb; 5(2):423-430. PubMed ID: 32013406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Simple and Double Yeast Cells Using Dielectrophoretic Force Measurement.
    García-Diego FJ; Rubio-Chavarría M; Beltrán P; Espinós FJ
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31484453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell 3D electro-rotation.
    Huang L; Zhao P; Liang F; Wang W
    Methods Cell Biol; 2018; 148():97-116. PubMed ID: 30473076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells.
    Wu L; Lanry Yung LY; Lim KM
    Biomicrofluidics; 2012 Mar; 6(1):14113-1411310. PubMed ID: 22662097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.