These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33548368)

  • 1. Coordinating Initial and Final Action Goals in Planning Grasp-to-Rotate Movements: An ERP Study.
    Yu L; Schack T; Koester D
    Neuroscience; 2021 Apr; 459():70-84. PubMed ID: 33548368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online Movement Correction in Response to the Unexpectedly Perturbed Initial or Final Action Goals: An ERP and sLORETA Study.
    Yu L; Schack T; Koester D
    Brain Sci; 2021 May; 11(5):. PubMed ID: 34063437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The what-decision in manual action: ERPs for free choice versus specified overt goal-related grasping.
    Westerholz J; Schack T; Koester D
    Neurosci Lett; 2014 Jul; 575():85-90. PubMed ID: 24861512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related brain potentials for goal-related power grips.
    Westerholz J; Schack T; Koester D
    PLoS One; 2013; 8(7):e68501. PubMed ID: 23844211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrections in grasp posture in response to modifications of action goals.
    Hughes CM; Seegelke C; Spiegel MA; Oehmichen C; Hammes J; Schack T
    PLoS One; 2012; 7(9):e43015. PubMed ID: 22970119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbations in action goal influence bimanual grasp posture planning.
    Hughes CM; Seegelke C
    J Mot Behav; 2013; 45(6):473-8. PubMed ID: 24006878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitual vs non-habitual manual actions: an ERP study on overt movement execution.
    Westerholz J; Schack T; Schütz C; Koester D
    PLoS One; 2014; 9(4):e93116. PubMed ID: 24691654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons.
    Bonini L; Ugolotti Serventi F; Bruni S; Maranesi M; Bimbi M; Simone L; Rozzi S; Ferrari PF; Fogassi L
    J Neurophysiol; 2012 Sep; 108(6):1607-19. PubMed ID: 22745465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habit outweighs planning in grasp selection for object manipulation.
    Herbort O; Mathew H; Kunde W
    Cogn Psychol; 2017 Feb; 92():127-140. PubMed ID: 27951435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations.
    Koester D; Schack T
    PLoS One; 2016; 11(12):e0165882. PubMed ID: 27973539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2018 Jun; 38(25):5759-5773. PubMed ID: 29798892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of reducing intermediate target constraints on grasp posture planning during a three-segment object manipulation task.
    Seegelke C; Hughes CM; Knoblauch A; Schack T
    Exp Brain Res; 2015 Feb; 233(2):529-38. PubMed ID: 25370347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Extrastriate Body Area Computes Desired Goal States during Action Planning.
    Zimmermann M; Verhagen L; de Lange FP; Toni I
    eNeuro; 2016; 3(2):. PubMed ID: 27066535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-task interference in action programming and action planning - Evidence from the end-state comfort effect.
    Löhr-Limpens M; Göhringer F; Schenk T
    Acta Psychol (Amst); 2022 Aug; 228():103637. PubMed ID: 35690027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct effect of perception on action when grasping a cup.
    Rounis E; van Polanen V; Davare M
    Sci Rep; 2018 Jan; 8(1):171. PubMed ID: 29317763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors.
    Gardner EP; Babu KS; Reitzen SD; Ghosh S; Brown AS; Chen J; Hall AL; Herzlinger MD; Kohlenstein JB; Ro JY
    J Neurophysiol; 2007 Jan; 97(1):387-406. PubMed ID: 16971679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.