BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33548505)

  • 1. Freezing stress adaptations: Critical elements to activate Nrf2 related antioxidant defense in liver and skeletal muscle of the freeze tolerant wood frogs.
    Zhang J; Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 254():110573. PubMed ID: 33548505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of antioxidant systems in response to anoxia and reoxygenation in Rana sylvatica.
    Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110436. PubMed ID: 32247058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.
    Larson DJ; Barnes BM
    Physiol Biochem Zool; 2016; 89(4):340-6. PubMed ID: 27327184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of unfolded protein response and ER-associated degradation under freezing, anoxia, and dehydration stresses in the freeze-tolerant wood frogs.
    Niles J; Singh G; Storey KB
    Cell Stress Chaperones; 2023 Jan; 28(1):61-77. PubMed ID: 36346580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog.
    Sullivan KJ; Storey KB
    Cryobiology; 2012 Jun; 64(3):192-200. PubMed ID: 22301420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs.
    Al-Attar R; Wu CW; Biggar KK; Storey KB
    Physiol Biochem Zool; 2020; 93(1):49-61. PubMed ID: 31742477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of NF-κB, FHC and SOD2 in response to oxidative stress in the freeze tolerant wood frog, Rana sylvatica.
    Gupta A; Brooks C; Storey KB
    Cryobiology; 2020 Dec; 97():28-36. PubMed ID: 33080279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog.
    Hawkins LJ; Wang M; Zhang B; Xiao Q; Wang H; Storey KB
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():1-13. PubMed ID: 30710892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; Storey KB
    Cryobiology; 2005 Feb; 50(1):71-82. PubMed ID: 15710371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica.
    Costanzo JP; Lee RE; Lortz PH
    J Exp Biol; 1993 Aug; 181():245-55. PubMed ID: 8409827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog.
    Dieni CA; Bouffard MC; Storey KB
    J Exp Biol; 2012 Feb; 215(Pt 3):543-51. PubMed ID: 22246263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pyruvate kinase in skeletal muscle of the freeze tolerant wood frog, Rana sylvatica.
    Smolinski MB; Mattice JJL; Storey KB
    Cryobiology; 2017 Aug; 77():25-33. PubMed ID: 28600082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage and repair responses to freezing and anoxia stresses in wood frogs, Rana sylvatica.
    Lung ZD; Storey KB
    J Therm Biol; 2022 Jul; 107():103274. PubMed ID: 35701025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive regeneration of glutathione: glutathione reductase regulation in the freeze-tolerant North American wood frog,
    Dawson NJ; Storey KB
    J Exp Biol; 2017 Sep; 220(Pt 17):3162-3171. PubMed ID: 28659307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs.
    Costanzo JP; Lee RE; Wright MF
    J Exp Zool; 1992 Apr; 261(4):373-8. PubMed ID: 1569408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In defense of proteins: Chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs.
    Storey JM; Storey KB
    J Exp Zool A Ecol Integr Physiol; 2019 Aug; 331(7):392-402. PubMed ID: 31276323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica.
    Wu CW; Tessier SN; Storey KB
    Cell Stress Chaperones; 2018 Nov; 23(6):1205-1217. PubMed ID: 29951989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica.
    Rider MH; Hussain N; Horman S; Dilworth SM; Storey KB
    Cryobiology; 2006 Dec; 53(3):297-309. PubMed ID: 16973146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MondoA:MLX complex regulates glucose-dependent gene expression and links to circadian rhythm in liver and brain of the freeze-tolerant wood frog, Rana sylvatica.
    Singh G; Storey KB
    Mol Cell Biochem; 2020 Oct; 473(1-2):203-216. PubMed ID: 32638259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance.
    Storey KB
    Cryobiology; 2004 Apr; 48(2):134-45. PubMed ID: 15094090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.