These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33548635)

  • 41. Connecting the Dots: Linking the Biochemical to Morphological Transitions in Alzheimer's Disease.
    Baig AM
    ACS Chem Neurosci; 2019 Jan; 10(1):21-24. PubMed ID: 30160095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Development of Disease-modifying Therapy for Alzheimer's Disease].
    Akiyama H
    Brain Nerve; 2016 Apr; 68(4):463-72. PubMed ID: 27056864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overcoming translational barriers impeding development of Alzheimer's disease modifying therapies.
    Golde TE
    J Neurochem; 2016 Oct; 139 Suppl 2(Suppl 2):224-236. PubMed ID: 27145445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Clicked" sugar-curcumin conjugate: modulator of amyloid-β and tau peptide aggregation at ultralow concentrations.
    Dolai S; Shi W; Corbo C; Sun C; Averick S; Obeysekera D; Farid M; Alonso A; Banerjee P; Raja K
    ACS Chem Neurosci; 2011 Dec; 2(12):694-9. PubMed ID: 22860163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An update on drug treatment options of Alzheimer's disease.
    Allgaier M; Allgaier C
    Front Biosci (Landmark Ed); 2014 Jun; 19(8):1345-54. PubMed ID: 24896354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-based inhibitors of amyloid beta core suggest a common interface with tau.
    Griner SL; Seidler P; Bowler J; Murray KA; Yang TP; Sahay S; Sawaya MR; Cascio D; Rodriguez JA; Philipp S; Sosna J; Glabe CG; Gonen T; Eisenberg DS
    Elife; 2019 Oct; 8():. PubMed ID: 31612856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The past, present, and future of disease-modifying therapies for Alzheimer's disease.
    Suzuki K; Iwata A; Iwatsubo T
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(10):757-771. PubMed ID: 29225305
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunotherapy for Alzheimer's disease.
    Wang W; Fan L; Xu D; Wen Z; Yu R; Ma Q
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):807-14. PubMed ID: 22899646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Developments on Multi-Target-Directed Tacrines for Alzheimer's Disease. I. The Pyranotacrines.
    Romero A; Marco-Contelles J
    Curr Top Med Chem; 2017; 17(31):3328-3335. PubMed ID: 29332586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease.
    Chen SY; Chen Y; Li YP; Chen SH; Tan JH; Ou TM; Gu LQ; Huang ZS
    Bioorg Med Chem; 2011 Sep; 19(18):5596-604. PubMed ID: 21840724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Treatment of Alzheimer's disease: symptomatic and disease-modifying approaches.
    Galimberti D; Scarpini E
    Curr Aging Sci; 2010 Feb; 3(1):46-56. PubMed ID: 20298170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors.
    Camps P; Formosa X; Muñoz-Torrero D; Petrignet J; Badia A; Clos MV
    J Med Chem; 2005 Mar; 48(6):1701-4. PubMed ID: 15771413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.
    Kumar K; Kumar A; Keegan RM; Deshmukh R
    Biomed Pharmacother; 2018 Feb; 98():297-307. PubMed ID: 29274586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation.
    Mao F; Huang L; Luo Z; Liu A; Lu C; Xie Z; Li X
    Bioorg Med Chem; 2012 Oct; 20(19):5884-92. PubMed ID: 22944335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct relationships of amyloid-beta and tau deposition to cerebral glucose metabolic networks in Alzheimer's disease.
    Sun X; Nie B; Zhao S; Ai L; Chen Q; Zhang T; Pan T; Wang L; Yin X; Zhang W; Shan B; Liu H; Liang S; Wang G
    Neurosci Lett; 2020 Jan; 717():134699. PubMed ID: 31874218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD.
    Digiacomo M; Chen Z; Wang S; Lapucci A; Macchia M; Yang X; Chu J; Han Y; Pi R; Rapposelli S
    Bioorg Med Chem Lett; 2015 Feb; 25(4):807-10. PubMed ID: 25597007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease.
    Aillaud I; Funke SA
    Cell Mol Neurobiol; 2023 Apr; 43(3):951-961. PubMed ID: 35596819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. First selective dual inhibitors of tau phosphorylation and Beta-amyloid aggregation, two major pathogenic mechanisms in Alzheimer's disease.
    Mariano M; Schmitt C; Miralinaghi P; Catto M; Hartmann RW; Carotti A; Engel M
    ACS Chem Neurosci; 2014 Dec; 5(12):1198-202. PubMed ID: 25247807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Progress Towards Vaccines and Antibody-based Therapies Against Alzheimer's Disease.
    Ji W; Gong B; Jin H; Chen X; Li P; Cheng W; Zhao Y; He B; Zhuang J; Gao J; Yin Y
    Mini Rev Med Chem; 2021; 21(19):3062-3072. PubMed ID: 34353254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethnobotanical significance of medicinal plants: Beta-amyloid and tau aggregation inhibitors against Alzheimer's disease.
    Ganapathy AA; Haripriya VM; Acharya N; Somappa SB; Kumaran A
    J Biochem Mol Toxicol; 2023 Jun; 37(6):e23339. PubMed ID: 37009720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.