These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33548644)

  • 21. Experimental investigation of pneumatic soil vapor extraction.
    Høier CK; Sonnenborg TO; Jensen KH; Kortegaard C; Nasser MM
    J Contam Hydrol; 2007 Jan; 89(1-2):29-47. PubMed ID: 16987566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction.
    Qin CY; Zhao YS; Zheng W; Li YS
    J Hazard Mater; 2010 Apr; 176(1-3):294-9. PubMed ID: 19954881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems.
    van Afferden M; Rahman KZ; Mosig P; De Biase C; Thullner M; Oswald SE; Müller RA
    Water Res; 2011 Oct; 45(16):5063-74. PubMed ID: 21794890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benzene homologues contaminants in a former herbicide factory site: distribution, attenuation, risk, and remediation implication.
    Yang S; Yan X; Zhong L; Tong X
    Environ Geochem Health; 2020 Jan; 42(1):241-253. PubMed ID: 31177476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review.
    Liu JW; Wei KH; Xu SW; Cui J; Ma J; Xiao XL; Xi BD; He XS
    Sci Total Environ; 2021 Feb; 756():144142. PubMed ID: 33302075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater.
    Man J; Wang G; Chen Q; Yao Y
    J Hazard Mater; 2021 Aug; 416():126272. PubMed ID: 34492998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site.
    Gill RT; Thornton SF; Harbottle MJ; Smith JW
    J Environ Manage; 2016 Dec; 184(Pt 1):120-131. PubMed ID: 27511828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental Electrokinetics for a sustainable subsurface.
    Lima AT; Hofmann A; Reynolds D; Ptacek CJ; Van Cappellen P; Ottosen LM; Pamukcu S; Alshawabekh A; O'Carroll DM; Riis C; Cox E; Gent DB; Landis R; Wang J; Chowdhury AIA; Secord EL; Sanchez-Hachair A
    Chemosphere; 2017 Aug; 181():122-133. PubMed ID: 28433930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Vapor extraction technology in oil contaminated soil remediation].
    Li J; Nie Y; Ma H; Xia X; Liang F; Zhen X
    Huan Jing Ke Xue; 2002 Jan; 23(1):92-6. PubMed ID: 11987416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers.
    Schomburg A; Schilling OS; Guenat C; Schirmer M; Le Bayon RC; Brunner P
    Sci Total Environ; 2018 Oct; 639():1610-1622. PubMed ID: 29929323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the effects of alcohol-enhanced air sparging remediation in a benzene-contaminated aquifer: a new insight.
    Chang Y; Yao M; Bai J; Zhao Y
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):35140-35150. PubMed ID: 31686334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application and benefit evaluation of tiered health risk assessment approach on site contaminated by benzene].
    Jiang L; Zhong MS; Liang J; Yao JJ; Xia TX; Fan YL; Li JD; Tang ZQ
    Huan Jing Ke Xue; 2013 Mar; 34(3):1034-43. PubMed ID: 23745412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems. 1. Laboratory studies.
    Poppendieck DG; Loehr RC; Webster MT
    J Hazard Mater; 1999 Oct; 69(1):81-93. PubMed ID: 10502608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone: An Overview of Issues and Approaches.
    Brusseau ML; Carroll KC; Truex MJ; Becker DJ
    Vadose Zone J; 2013 Nov; 12(4):. PubMed ID: 25383058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media.
    Chu Y; Werth CJ; Valocchi AJ; Yoon H; Webb AG
    J Contam Hydrol; 2004 Sep; 73(1-4):15-37. PubMed ID: 15336788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model analysis of mechanisms controlling pneumatic soil vapor extraction.
    Høier CK; Sonnenborg TO; Jensen KH; Gudbjerg J
    J Contam Hydrol; 2009 Jan; 103(3-4):82-98. PubMed ID: 19004522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research on the application of in-situ biological stabilization solidification technology in chromium contaminated site management].
    Zhang JR; Li J; Xu W
    Huan Jing Ke Xue; 2013 Sep; 34(9):3684-9. PubMed ID: 24289024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants.
    Park G; Shin HS; Ko SO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):881-97. PubMed ID: 15792306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.