These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33548719)

  • 41. Microalgae Filtration Using an Electrochemically Reactive Ceramic Membrane: Filtration Performances, Fouling Kinetics, and Foulant Layer Characteristics.
    Hua L; Cao H; Ma Q; Shi X; Zhang X; Zhang W
    Environ Sci Technol; 2020 Feb; 54(3):2012-2021. PubMed ID: 31916753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of sludge retention time on MBR fouling: role of extracellular polymeric substances determined through membrane autopsy.
    Silva AF; Antunes S; Freitas F; Carvalho G; Reis MAM; Barreto Crespo MT
    Biofouling; 2017 Aug; 33(7):556-566. PubMed ID: 28675051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.
    Ferrando Chavez DL; Nejidat A; Herzberg M
    Environ Sci Technol; 2016 Sep; 50(17):9206-13. PubMed ID: 27404109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodiversity and ecology of microorganisms in high pressure membrane filtration systems.
    de Vries HJ; Stams AJM; Plugge CM
    Water Res; 2020 Apr; 172():115511. PubMed ID: 31986400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation.
    Ma W; Soroush A; Van Anh Luong T; Brennan G; Rahaman MS; Asadishad B; Tufenkji N
    Water Res; 2016 Aug; 99():188-199. PubMed ID: 27161885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stabilization of flux during dead-end ultra-low pressure ultrafiltration.
    Peter-Varbanets M; Hammes F; Vital M; Pronk W
    Water Res; 2010 Jun; 44(12):3607-16. PubMed ID: 20488503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The fouling layer development on MD membrane for water treatments: An especial focus on the biofouling progress.
    Chen L; Wang Y; Chen Z; Cai Z
    Chemosphere; 2021 Feb; 264(Pt 2):128458. PubMed ID: 33039691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafiltration of up-flow biological activated carbon effluent: Extracellular polymer biofouling mechanism and mitigation using pre-ozonation with H
    Yu X; Lin T; Xu H; Tao H; Chen W
    Water Res; 2020 Nov; 186():116391. PubMed ID: 32947101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration.
    Desmond P; Morgenroth E; Derlon N
    Water Res; 2018 Oct; 143():539-549. PubMed ID: 30007257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biofouling in forward osmosis systems: An experimental and numerical study.
    Bucs SS; Valladares Linares R; Vrouwenvelder JS; Picioreanu C
    Water Res; 2016 Dec; 106():86-97. PubMed ID: 27697688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofouling of reverse osmosis membranes: positively contributing factors of Sphingomonas.
    Gutman J; Herzberg M; Walker SL
    Environ Sci Technol; 2014 Dec; 48(23):13941-50. PubMed ID: 25354089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes.
    Nagaraj V; Skillman L; Li D; Ho G
    J Environ Manage; 2018 Oct; 223():586-599. PubMed ID: 29975885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation.
    Liu C; Song D; Zhang W; He Q; Huangfu X; Sun S; Sun Z; Cheng W; Ma J
    Water Res; 2020 Jan; 168():115181. PubMed ID: 31630018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.
    Chomiak A; Traber J; Morgenroth E; Derlon N
    Water Res; 2015 Nov; 85():512-20. PubMed ID: 26386342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems.
    Xiao Y; Seo Y; Lin Y; Li L; Muhammad T; Ma C; Li Y
    Water Res; 2020 Apr; 173():115562. PubMed ID: 32044595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.
    Desmond P; Best JP; Morgenroth E; Derlon N
    Water Res; 2018 Apr; 132():211-221. PubMed ID: 29331909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes.
    Altman SJ; McGrath LK; Jones HD; Sanchez A; Noek R; Clem P; Cook A; Ho CK
    Water Res; 2010 Jun; 44(12):3545-54. PubMed ID: 20493509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.
    Zhang Y; Yu X; Gong S; Ye C; Fan Z; Lin H
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1309-20. PubMed ID: 23715854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characteristics of different fractions of microbial flocs and their role in membrane fouling.
    Lin HJ; Gao WJ; Leung KT; Liao BQ
    Water Sci Technol; 2011; 63(2):262-9. PubMed ID: 21252429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.