These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33549886)
61. Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: modeling of the metal/ligand ratio effect and role of the mineral fraction. Guibaud G; van Hullebusch E; Bordas F; d'Abzac P; Joussein E Bioresour Technol; 2009 Jun; 100(12):2959-68. PubMed ID: 19254840 [TBL] [Abstract][Full Text] [Related]
62. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Macfie SM; Welbourn PM Arch Environ Contam Toxicol; 2000 Nov; 39(4):413-9. PubMed ID: 11031300 [TBL] [Abstract][Full Text] [Related]
63. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Wang XD; Lu YC; Xiong XH; Yuan Y; Lu LX; Liu YJ; Mao JH; Xiao WW Environ Sci Pollut Res Int; 2020 Apr; 27(10):11246-11259. PubMed ID: 31960244 [TBL] [Abstract][Full Text] [Related]
64. Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment. Dong Y; Gao M; Qiu W; Song Z J Hazard Mater; 2021 Mar; 405():124232. PubMed ID: 33087286 [TBL] [Abstract][Full Text] [Related]
65. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb Chang J; Zhang H; Cheng H; Yan Y; Chang M; Cao Y; Huang F; Zhang G; Yan M Chemosphere; 2020 Feb; 241():125121. PubMed ID: 31683424 [TBL] [Abstract][Full Text] [Related]
66. Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Nishikawa K; Onodera A; Tominaga N Chemosphere; 2006 Jun; 63(9):1553-9. PubMed ID: 16297961 [TBL] [Abstract][Full Text] [Related]
67. Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: Role of antioxidants and biochemical contents in metal detoxification. Ismaiel MMS; Said AA Ecotoxicol Environ Saf; 2018 Nov; 164():704-712. PubMed ID: 30172207 [TBL] [Abstract][Full Text] [Related]
68. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Yang WW; Li Y; Miao AJ; Yang LY Ecotoxicol Environ Saf; 2012 Nov; 85():44-51. PubMed ID: 22975689 [TBL] [Abstract][Full Text] [Related]
69. Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses. Jiang Z; Jiang L; Zhang L; Su M; Tian D; Wang T; Sun Y; Nong Y; Hu S; Wang S; Li Z Environ Microbiol; 2020 Apr; 22(4):1507-1516. PubMed ID: 31215728 [TBL] [Abstract][Full Text] [Related]
70. Effects of chronic lead and cadmium exposure on the oriental river prawn (Macrobrachium nipponense) in laboratory conditions. Rezaei Tavabe K; Pouryounes Abkenar B; Rafiee G; Frinsko M Comp Biochem Physiol C Toxicol Pharmacol; 2019 Jul; 221():21-28. PubMed ID: 30930206 [TBL] [Abstract][Full Text] [Related]
71. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Nowicka B; Pluciński B; Kuczyńska P; Kruk J Ecotoxicol Environ Saf; 2016 Aug; 130():133-45. PubMed ID: 27104807 [TBL] [Abstract][Full Text] [Related]
72. Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii. Jiang Z; Sun Y; Guan H; Sun D; Fang S; Ma X; Wang Z; Li Z; Zhang C; Ge Y Ecotoxicol Environ Saf; 2022 Jan; 229():113091. PubMed ID: 34922168 [TBL] [Abstract][Full Text] [Related]
73. Single and mixture toxicity of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn to the rotifer Proales similis under different salinities. Rebolledo UA; Páez-Osuna F; Fernández R Environ Pollut; 2021 Feb; 271():116357. PubMed ID: 33383422 [TBL] [Abstract][Full Text] [Related]
74. Toxic metals (Hg, Pb, and Cd) in commercially important demersal fish from Mediterranean sea: contamination levels and dietary exposure assessment. Storelli MM; Barone G J Food Sci; 2013 Feb; 78(2):T362-6. PubMed ID: 23311497 [TBL] [Abstract][Full Text] [Related]
75. Effects of algal-bacterial ratio on the growth and cadmium accumulation of Chlorella salina-Bacillus subtilis consortia. Yu Q; Li P; Li B; Zhang C; Zhang C; Ge Y J Basic Microbiol; 2022 Mar; 62(3-4):518-529. PubMed ID: 34486742 [TBL] [Abstract][Full Text] [Related]
76. Efficiency of Pb, Zn, Cd, and Mn Removal from Karst Water by Zhou JM; Jiang ZC; Qin XQ; Zhang LK; Huang QB; Xu GL; Dionysiou DD Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32722539 [TBL] [Abstract][Full Text] [Related]
77. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity. Mera R; Torres E; Abalde J Aquat Toxicol; 2014 Mar; 148():92-103. PubMed ID: 24463493 [TBL] [Abstract][Full Text] [Related]
78. Preparation of biosorbents from the Jatoba (Hymenaea courbaril) fruit shell for removal of Pb(II) and Cd(II) from aqueous solution. Souza IPAF; Cazetta AL; Pezoti O; Almeida VC Environ Monit Assess; 2017 Nov; 189(12):632. PubMed ID: 29130144 [TBL] [Abstract][Full Text] [Related]
79. Influence of diffuse and chronic metal pollution in water and sediments on edible seafoods within Ondo oil-polluted coastal region, Nigeria. Ololade IA; Lajide L; Olumekun VO; Ololade OO; Ejelonu BC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(8):898-908. PubMed ID: 21714630 [TBL] [Abstract][Full Text] [Related]
80. Responses of Raphidocelis subcapitata exposed to Cd and Pb: Mechanisms of toxicity assessed by multiple endpoints. Alho LOG; Gebara RC; Paina KA; Sarmento H; Melão MDGG Ecotoxicol Environ Saf; 2019 Mar; 169():950-959. PubMed ID: 30597796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]