BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 33550013)

  • 1. Plant mitochondria and chloroplasts are targeted by the Rhizoctonia solani RsCRP1 effector.
    Tzelepis G; Dölfors F; Holmquist L; Dixelius C
    Biochem Biophys Res Commun; 2021 Mar; 544():86-90. PubMed ID: 33550013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-targeting effector RsIA_CtaG/Cox11 in Rhizoctonia solani AG-1 IA has two functions: plant immunity suppression and cell death induction mediated by a rice cytochrome c oxidase subunit.
    Zhang D; Lin R; Yamamoto N; Wang Z; Lin H; Okada K; Liu Y; Xiang X; Zheng T; Zheng H; Yi X; Noutoshi Y; Zheng A
    Mol Plant Pathol; 2024 Jan; 25(1):e13397. PubMed ID: 37902589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet.
    Rangel LI; Spanner RE; Ebert MK; Pethybridge SJ; Stukenbrock EH; de Jonge R; Secor GA; Bolton MD
    Mol Plant Pathol; 2020 Aug; 21(8):1020-1041. PubMed ID: 32681599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the aggressiveness of Rhizoctonia solani isolates.
    Heremans B; Garrido Sepulveda A; Haesaert G
    Commun Agric Appl Biol Sci; 2007; 72(4):989-91. PubMed ID: 18396839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase domain effector AGLIP1 in Rhizoctonia solani triggers necrotic killing in plants.
    Kumar P; Kumari P
    Plant Cell Rep; 2024 May; 43(6):145. PubMed ID: 38761220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation.
    Schmittgen S; Metzner R; Van Dusschoten D; Jansen M; Fiorani F; Jahnke S; Rascher U; Schurr U
    J Exp Bot; 2015 Sep; 66(18):5543-53. PubMed ID: 25873673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet.
    Hillnhütter C; Sikora RA; Oerke EC; van Dusschoten D
    J Exp Bot; 2012 Jan; 63(1):319-27. PubMed ID: 21948851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous isolation of intact mitochondria and chloroplasts from a single pulping of plant tissue.
    Rödiger A; Baudisch B; Klösgen RB
    J Plant Physiol; 2010 May; 167(8):620-4. PubMed ID: 20045215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secreted Effector Proteins of Poplar Leaf Spot and Stem Canker Pathogen
    Zhao Y; Zheng X; Tabima JF; Zhu S; Søndreli KL; Hundley H; Bauer D; Barry K; Zhang Y; Schmutz J; Wang Y; LeBoldus JM; Xiong Q
    Mol Plant Microbe Interact; 2023 Dec; 36(12):779-795. PubMed ID: 37551980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity.
    Shang S; Liu G; Zhang S; Liang X; Zhang R; Sun G
    Plant Biotechnol J; 2024 Jan; 22(1):82-97. PubMed ID: 37596985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off.
    Bonanomi G; Zotti M; Idbella M; Di Silverio N; Carrino L; Cesarano G; Assaeed AM; Abd-ElGawad AM
    PLoS One; 2020; 15(4):e0230925. PubMed ID: 32271811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast immunity: A cornerstone of plant defense.
    Liu J; Gong P; Lu R; Lozano-Durán R; Zhou X; Li F
    Mol Plant; 2024 May; 17(5):686-688. PubMed ID: 38509708
    [No Abstract]   [Full Text] [Related]  

  • 13. Co-localization of mitochondria with chloroplasts is a light-dependent reversible response.
    Islam MS; Takagi S
    Plant Signal Behav; 2010 Feb; 5(2):146-7. PubMed ID: 20023395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards plant resistance to viruses using protein-only RNase P.
    Gobert A; Quan Y; Arrivé M; Waltz F; Da Silva N; Jomat L; Cohen M; Jupin I; Giegé P
    Nat Commun; 2021 Feb; 12(1):1007. PubMed ID: 33579946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress.
    Pottosin I; Olivas-Aguirre M; Dobrovinskaya O; Zepeda-Jazo I; Shabala S
    Front Plant Sci; 2020; 11():616077. PubMed ID: 33574826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular oxidative stress in programmed cell death: focusing on chloroplastic
    Matilla AJ
    J Plant Res; 2021 Mar; 134(2):179-194. PubMed ID: 33569718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Epigenetics: Propelling DNA Methylation Variation across the Cell Cycle.
    Papareddy RK; Nodine MD
    Curr Biol; 2021 Feb; 31(3):R129-R131. PubMed ID: 33561411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions.
    Yang F; Xiao K; Pan H; Liu J
    Front Plant Sci; 2021; 12():637853. PubMed ID: 33747017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection.
    Wang S; He B; Wu H; Cai Q; Ramírez-Sánchez O; Abreu-Goodger C; Birch PRJ; Jin H
    Cell Host Microbe; 2024 Jan; 32(1):93-105.e6. PubMed ID: 38103543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endophytic
    Wang Z; Gao C; Yang J; Du R; Zeng F; Bing H; Xia B; Shen Y; Liu C
    Front Microbiol; 2023; 14():1243610. PubMed ID: 37692391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.