These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33550142)

  • 1. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants.
    Deering J; Dowling KI; DiCecco LA; McLean GD; Yu B; Grandfield K
    J Mech Behav Biomed Mater; 2021 Apr; 116():104361. PubMed ID: 33550142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and properties of biomimetic irregular scaffolds for bone tissue engineering.
    Chen H; Liu Y; Wang C; Zhang A; Chen B; Han Q; Wang J
    Comput Biol Med; 2021 Mar; 130():104241. PubMed ID: 33529844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Mechanical Properties and Permeability of Trabecular-Like Porous Scaffold by Additive Manufacturing.
    Chao L; Jiao C; Liang H; Xie D; Shen L; Liu Z
    Front Bioeng Biotechnol; 2021; 9():779854. PubMed ID: 34993188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive anisotropy of sheet and strut based porous Ti-6Al-4V scaffolds.
    Barber H; Kelly CN; Nelson K; Gall K
    J Mech Behav Biomed Mater; 2021 Mar; 115():104243. PubMed ID: 33307487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing.
    Wang G; Shen L; Zhao J; Liang H; Xie D; Tian Z; Wang C
    ACS Biomater Sci Eng; 2018 Feb; 4(2):719-727. PubMed ID: 33418759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants.
    Liverani E; Rogati G; Pagani S; Brogini S; Fortunato A; Caravaggi P
    J Mech Behav Biomed Mater; 2021 Sep; 121():104608. PubMed ID: 34077904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram.
    Sharma N; Ostas D; Rotar H; Brantner P; Thieringer FM
    Front Physiol; 2021; 12():647923. PubMed ID: 33897455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.
    Moiduddin K
    Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing.
    Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved trabecular bone model based on Voronoi tessellation.
    Zhou Y; Isaksson P; Persson C
    J Mech Behav Biomed Mater; 2023 Dec; 148():106172. PubMed ID: 37852087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multifaceted biomimetic interface to improve the longevity of orthopedic implants.
    Croes M; Akhavan B; Sharifahmadian O; Fan H; Mertens R; Tan RP; Chunara A; Fadzil AA; Wise SG; Kruyt MC; Wijdicks S; Hennink WE; Bilek MMM; Amin Yavari S
    Acta Biomater; 2020 Jul; 110():266-279. PubMed ID: 32344174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and assessment of the biomimetic capabilities of a Voronoi-based cancellous microstructure.
    Frayssinet E; Colabella L; Cisilino AP
    J Mech Behav Biomed Mater; 2022 Jun; 130():105186. PubMed ID: 35405520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.
    Bobbert FSL; Lietaert K; Eftekhari AA; Pouran B; Ahmadi SM; Weinans H; Zadpoor AA
    Acta Biomater; 2017 Apr; 53():572-584. PubMed ID: 28213101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure.
    Cheong VS; Fromme P; Coathup MJ; Mumith A; Blunn GW
    Ann Biomed Eng; 2020 Jan; 48(1):502-514. PubMed ID: 31549330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.