BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33550144)

  • 1. Compositional, microstructural and mechanical effects of NaCl porogens in brushite cement scaffolds.
    Şahin E; Çiftçioğlu M
    J Mech Behav Biomed Mater; 2021 Apr; 116():104363. PubMed ID: 33550144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation.
    Sheikh Z; Zhang YL; Tamimi F; Barralet J
    Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monetite promoting effect of NaCl on brushite cement setting kinetics.
    Şahin E; Çiftçioğlu M
    J Mater Chem B; 2013 Jun; 1(23):2943-2950. PubMed ID: 32260861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.
    Smith BT; Santoro M; Grosfeld EC; Shah SR; van den Beucken JJJP; Jansen JA; Mikos AG
    Acta Biomater; 2017 Mar; 50():68-77. PubMed ID: 27956363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.
    Sheikh Z; Zhang YL; Grover L; Merle GE; Tamimi F; Barralet J
    Acta Biomater; 2015 Oct; 26():338-46. PubMed ID: 26300333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite.
    Tamimi F; Le Nihouannen D; Eimar H; Sheikh Z; Komarova S; Barralet J
    Acta Biomater; 2012 Aug; 8(8):3161-9. PubMed ID: 22522010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of composition on mechanical properties of brushite cements.
    Engstrand J; Persson C; Engqvist H
    J Mech Behav Biomed Mater; 2014 Jan; 29():81-90. PubMed ID: 24064324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method of forming micro- and macroporous monetite cements.
    Cama G; Gharibi B; Sait MS; Knowles JC; Lagazzo A; Romeed S; Di Silvio L; Deb S
    J Mater Chem B; 2013 Feb; 1(7):958-969. PubMed ID: 32262360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and mechanical properties of newly developed triphasic blocks composed of gypsum-brushite-monetite for bone graft applications.
    Soraya Shahnaz Tadjoedin E; Sunarso
    Saudi Dent J; 2022 Dec; 34(8):757-762. PubMed ID: 36570579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium substitution in brushite cements.
    Alkhraisat MH; Cabrejos-Azama J; Rodríguez CR; Jerez LB; Cabarcos EL
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):475-81. PubMed ID: 25428098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Anabolic Conjugate (C3) in the Matrix of Dicalcium Phosphate Onlay Block Grafts for Achieving Vertical Bone Augmentation: An Experimental Study on Rabbit Calvaria.
    Sheikh Z; Chen G; Thévenin M; Young RN; Grynpas MD; Glogauer M
    Int J Oral Maxillofac Implants; 2019; 34(4):e51–e63. PubMed ID: 30716148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.
    Ajaxon I; Acciaioli A; Lionello G; Ginebra MP; Öhman-Mägi C; Baleani M; Persson C
    J Mech Behav Biomed Mater; 2017 Oct; 74():428-437. PubMed ID: 28735216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method.
    Cama G; Gharibi B; Knowles JC; Romeed S; DiSilvio L; Deb S
    J R Soc Interface; 2014 Dec; 11(101):20140727. PubMed ID: 25297314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dicalcium phosphate cements: brushite and monetite.
    Tamimi F; Sheikh Z; Barralet J
    Acta Biomater; 2012 Feb; 8(2):474-87. PubMed ID: 21856456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration.
    Wei J; Jia J; Wu F; Wei S; Zhou H; Zhang H; Shin JW; Liu C
    Biomaterials; 2010 Feb; 31(6):1260-9. PubMed ID: 19931903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration mechanism of a calcium phosphate cement modified with phytic acid.
    Hurle K; Weichhold J; Brueckner M; Gbureck U; Brueckner T; Goetz-Neunhoeffer F
    Acta Biomater; 2018 Oct; 80():378-389. PubMed ID: 30195085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors.
    Sladkova M; Palmer M; Öhman C; Alhaddad RJ; Esmael A; Engqvist H; de Peppo GM
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():640-52. PubMed ID: 27612757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.