BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33550279)

  • 1. Suppression of p16 alleviates the senescence-associated secretory phenotype.
    Buj R; Leon KE; Anguelov MA; Aird KM
    Aging (Albany NY); 2021 Feb; 13(3):3290-3312. PubMed ID: 33550279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype.
    Coppé JP; Rodier F; Patil CK; Freund A; Desprez PY; Campisi J
    J Biol Chem; 2011 Oct; 286(42):36396-403. PubMed ID: 21880712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of p16
    Diekman BO; Sessions GA; Collins JA; Knecht AK; Strum SL; Mitin NK; Carlson CS; Loeser RF; Sharpless NE
    Aging Cell; 2018 Aug; 17(4):e12771. PubMed ID: 29744983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRIM28/KAP1 regulates senescence.
    Santos J; Gil J
    Immunol Lett; 2014 Nov; 162(1 Pt B):281-9. PubMed ID: 25160591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP).
    En A; Takauji Y; Ayusawa D; Fujii M
    Exp Cell Res; 2020 May; 390(1):111927. PubMed ID: 32126237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CBX4 Regulates Replicative Senescence of WI-38 Fibroblasts.
    Chen YH; Zhang X; Ko KY; Hsueh MF; Kraus VB
    Oxid Med Cell Longev; 2022; 2022():5503575. PubMed ID: 35251476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response.
    Su Y; Wang P; Shen H; Sun Z; Xu C; Li G; Tong T; Chen J
    J Cell Sci; 2018 Mar; 131(6):. PubMed ID: 29420297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells.
    Murakami T; Inagaki N; Kondoh H
    Front Endocrinol (Lausanne); 2022; 13():869414. PubMed ID: 35432205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLL1 is essential for the senescence-associated secretory phenotype.
    Capell BC; Drake AM; Zhu J; Shah PP; Dou Z; Dorsey J; Simola DF; Donahue G; Sammons M; Rai TS; Natale C; Ridky TW; Adams PD; Berger SL
    Genes Dev; 2016 Feb; 30(3):321-36. PubMed ID: 26833731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.
    Wang R; Yu Z; Sunchu B; Shoaf J; Dang I; Zhao S; Caples K; Bradley L; Beaver LM; Ho E; Löhr CV; Perez VI
    Aging Cell; 2017 Jun; 16(3):564-574. PubMed ID: 28371119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between p21 and Akt is required for p53-dependent cellular senescence.
    Kim YY; Jee HJ; Um JH; Kim YM; Bae SS; Yun J
    Aging Cell; 2017 Oct; 16(5):1094-1103. PubMed ID: 28691365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A.
    Leon KE; Buj R; Lesko E; Dahl ES; Chen CW; Tangudu NK; Imamura-Kawasawa Y; Kossenkov AV; Hobbs RP; Aird KM
    J Cell Biol; 2021 Aug; 220(8):. PubMed ID: 34037658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells.
    Minieri V; Saviozzi S; Gambarotta G; Lo Iacono M; Accomasso L; Cibrario Rocchietti E; Gallina C; Turinetto V; Giachino C
    J Cell Mol Med; 2015 Apr; 19(4):734-43. PubMed ID: 25619736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Senescence-Like Phenotypes in Human Nevi.
    Joselow A; Lynn D; Terzian T; Box NF
    Methods Mol Biol; 2017; 1534():175-184. PubMed ID: 27812879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered p16
    Malvezzi H; Dobo C; Filippi RZ; Mendes do Nascimento H; Palmieri da Silva E Sousa L; Meola J; Piccinato CA; Podgaec S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling.
    Chen L; Yang R; Qiao W; Zhang W; Chen J; Mao L; Goltzman D; Miao D
    Aging Cell; 2019 Jun; 18(3):e12951. PubMed ID: 30907059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of a p16
    Futami K; Sato S; Maita M; Katagiri T
    Dev Comp Immunol; 2022 Aug; 133():104420. PubMed ID: 35417735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and Temporal Control of Senescence.
    Ito Y; Hoare M; Narita M
    Trends Cell Biol; 2017 Nov; 27(11):820-832. PubMed ID: 28822679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Senescence in head and neck squamous cell carcinoma: relationship between senescence-associated secretory phenotype (SASP) mRNA expression level and clinicopathological features.
    Ostrowska K; Niewinski P; Piotrowski I; Ostapowicz J; Koczot S; Suchorska WM; Golusiński P; Masternak MM; Golusiński W
    Clin Transl Oncol; 2024 Apr; 26(4):1022-1032. PubMed ID: 38175424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice.
    Yousefzadeh MJ; Zhao J; Bukata C; Wade EA; McGowan SJ; Angelini LA; Bank MP; Gurkar AU; McGuckian CA; Calubag MF; Kato JI; Burd CE; Robbins PD; Niedernhofer LJ
    Aging Cell; 2020 Mar; 19(3):e13094. PubMed ID: 31981461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.