BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33550630)

  • 1. β-sheet breakers with consecutive phenylalanines: Insights into mechanism of dissolution of β-amyloid fibrils.
    Jarmuła A; Ludwiczak J; Stępkowski D
    Proteins; 2021 Jul; 89(7):762-780. PubMed ID: 33550630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The β-sheet breakers and π-stacking.
    Jarmuła A; Stępkowski D
    J Pept Sci; 2013 Jun; 19(6):345-9. PubMed ID: 23526717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds.
    Dong M; Zhao W; Hu D; Ai H; Kang B
    ACS Chem Neurosci; 2017 Jul; 8(7):1577-1588. PubMed ID: 28406293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β
    Shuaib S; Narang SS; Goyal D; Goyal B
    J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Novel Multifunctional Ligand for Simultaneous Inhibition of Amyloid-Beta (Aβ
    Asadbegi M; Shamloo A
    ACS Chem Neurosci; 2019 Nov; 10(11):4619-4632. PubMed ID: 31566950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers.
    Jarmuła A; Zubalska M; Stępkowski D
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D-enantiomeric decapeptide rk10.
    Singh K; Kaur A; Goyal D; Goyal B
    Phys Chem Chem Phys; 2022 Sep; 24(36):21975-21994. PubMed ID: 36069400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    Comput Biol Chem; 2021 Jun; 92():107471. PubMed ID: 33706107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin Binding to Beta Amyloid: A Computational Study.
    Rao PP; Mohamed T; Teckwani K; Tin G
    Chem Biol Drug Des; 2015 Oct; 86(4):813-20. PubMed ID: 25776887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives.
    Dubey S; Kallubai M; Subramanyam R
    Int J Biol Macromol; 2021 Mar; 173():56-65. PubMed ID: 33465364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of amyloid toxicity based on beta-sheet packing of Abeta40 and Abeta42.
    Sato T; Kienlen-Campard P; Ahmed M; Liu W; Li H; Elliott JI; Aimoto S; Constantinescu SN; Octave JN; Smith SO
    Biochemistry; 2006 May; 45(17):5503-16. PubMed ID: 16634632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ
    Saini RK; Shuaib S; Goyal D; Goyal B
    J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for improved mimetic peptides inhibitors preventing conformational transition of amyloid-β
    Gera J; Szögi T; Bozsó Z; Fülöp L; Barrera EE; Rodriguez AM; Méndez L; Delpiccolo CML; Mata EG; Cioffi F; Broersen K; Paragi G; Enriz RD
    Bioorg Chem; 2018 Dec; 81():211-221. PubMed ID: 30144634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular model of Alzheimer amyloid beta-peptide fibril formation.
    Tjernberg LO; Callaway DJ; Tjernberg A; Hahne S; Lilliehöök C; Terenius L; Thyberg J; Nordstedt C
    J Biol Chem; 1999 Apr; 274(18):12619-25. PubMed ID: 10212241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β
    Shuaib S; Goyal B
    J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrest of beta-amyloid fibril formation by a pentapeptide ligand.
    Tjernberg LO; Näslund J; Lindqvist F; Johansson J; Karlström AR; Thyberg J; Terenius L; Nordstedt C
    J Biol Chem; 1996 Apr; 271(15):8545-8. PubMed ID: 8621479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides.
    Bruce NJ; Chen D; Dastidar SG; Marks GE; Schein CH; Bryce RA
    Peptides; 2010 Nov; 31(11):2100-8. PubMed ID: 20691234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.