These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 33550797)
1. DNAzyme Amplified Aptasensing Platform for Ochratoxin A Detection Using a Personal Glucose Meter. Zhang S; Luan Y; Xiong M; Zhang J; Lake R; Lu Y ACS Appl Mater Interfaces; 2021 Mar; 13(8):9472-9481. PubMed ID: 33550797 [TBL] [Abstract][Full Text] [Related]
2. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
3. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Wang C; Dong X; Liu Q; Wang K Anal Chim Acta; 2015 Feb; 860():83-8. PubMed ID: 25682251 [TBL] [Abstract][Full Text] [Related]
4. Multi-code magnetic beads based on DNAzyme-mediated double-cycling amplification for a point-of-care assay of telomerase activity. Liu C; Zhang S; Li X; Xue Q; Jiang W Analyst; 2019 Jul; 144(14):4241-4249. PubMed ID: 31210200 [TBL] [Abstract][Full Text] [Related]
5. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Talanta; 2013 Nov; 116():520-6. PubMed ID: 24148439 [TBL] [Abstract][Full Text] [Related]
6. Portable Aptasensor of Aflatoxin B1 in Bread Based on a Personal Glucose Meter and DNA Walking Machine. Yang X; Shi D; Zhu S; Wang B; Zhang X; Wang G ACS Sens; 2018 Jul; 3(7):1368-1375. PubMed ID: 29943575 [TBL] [Abstract][Full Text] [Related]
7. A photothermal aptasensor based on rolling circle amplification-enriched DNAzyme for portable detection of ochratoxin A in grape juice. Long X; Wu Q; Yang L; Xie L; Ma L; Zhao Q; Cui Y; He Y; Zhang Y Int J Biol Macromol; 2024 Jun; 269(Pt 2):132279. PubMed ID: 38734344 [TBL] [Abstract][Full Text] [Related]
8. Taking glucose as intermediate bridge-signal-molecule for on-site and convenient detection of ochratoxin A in rice with portable glucose meter. Zhang R; Yan C; Zong Z; Qu W; Yao L; Xu J; Zhu Y; Yao B; Chen W Food Chem; 2023 Jan; 400():134007. PubMed ID: 36055149 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Mun H; Jo EJ; Li T; Joung HA; Hong DG; Shim WB; Jung C; Kim MG Biosens Bioelectron; 2014 Aug; 58():308-13. PubMed ID: 24658027 [TBL] [Abstract][Full Text] [Related]
10. DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin. Yang Z; Liu M; Li B Mikrochim Acta; 2020 Nov; 187(12):678. PubMed ID: 33247409 [TBL] [Abstract][Full Text] [Related]
11. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727 [TBL] [Abstract][Full Text] [Related]
12. Signal-amplification detection of small molecules by use of Mg2+-dependent DNAzyme. Guo Z; Wang J; Wang E Anal Bioanal Chem; 2013 May; 405(12):4051-7. PubMed ID: 23407810 [TBL] [Abstract][Full Text] [Related]
13. Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Hong L; Zhou F; Shi D; Zhang X; Wang G Biosens Bioelectron; 2017 Sep; 95():152-159. PubMed ID: 28445812 [TBL] [Abstract][Full Text] [Related]
14. Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein. Huang Y; Chen J; Zhao S; Shi M; Chen ZF; Liang H Anal Chem; 2013 May; 85(9):4423-30. PubMed ID: 23534943 [TBL] [Abstract][Full Text] [Related]
15. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
16. Specific Coordination between Zr-MOF and Phosphate-Terminated DNA Coupled with Strand Displacement for the Construction of Reusable and Ultrasensitive Aptasensor. Qiu W; Gao F; Yano N; Kataoka Y; Handa M; Yang W; Tanaka H; Wang Q Anal Chem; 2020 Aug; 92(16):11332-11340. PubMed ID: 32678980 [TBL] [Abstract][Full Text] [Related]
17. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Han B; Fang C; Sha L; Jalalah M; Al-Assiri MS; Harraz FA; Cao Y Food Chem; 2021 Feb; 338():127827. PubMed ID: 32822900 [TBL] [Abstract][Full Text] [Related]
18. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704 [TBL] [Abstract][Full Text] [Related]
19. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme. Zhu S; Wang X; Jing C; Yin Y; Zhou N Mikrochim Acta; 2019 Feb; 186(3):176. PubMed ID: 30771011 [TBL] [Abstract][Full Text] [Related]
20. Highly Sensitive Aptasensor for Trace Arsenic(III) Detection Using DNAzyme as the Biocatalytic Amplifier. Zeng L; Zhou D; Gong J; Liu C; Chen J Anal Chem; 2019 Feb; 91(3):1724-1727. PubMed ID: 30666874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]