These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33551056)

  • 1. Controlling water transport between micelles and aqueous microdroplets during sample enrichment.
    Fukuyama M; Zhou L; Okada T; Simonova KV; Proskurnin M; Hibara A
    Anal Chim Acta; 2021 Mar; 1149():338212. PubMed ID: 33551056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of Oligopeptide from Aqueous Phase to Span 80 Reverse Micelles in Microdroplet Array.
    Fukuyama M; Suto M; Hibara A
    Anal Sci; 2021 May; 37(5):753-758. PubMed ID: 33487599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification.
    Fukuyama M; Hibara A
    Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous two-phase microdroplets with reversible phase transitions.
    Boreyko JB; Mruetusatorn P; Retterer ST; Collier CP
    Lab Chip; 2013 Apr; 13(7):1295-301. PubMed ID: 23381219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentrating solutes and nanoparticles within individual aqueous microdroplets.
    He M; Sun C; Chiu DT
    Anal Chem; 2004 Mar; 76(5):1222-7. PubMed ID: 14987074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Switching of the Concentration/Separation Behavior of Microdroplets.
    Fukuyama M; Hibara A; Yoshida Y; Maeda K
    Anal Chem; 2017 Sep; 89(17):9279-9283. PubMed ID: 28745495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Activity-Based Dissolution Model for Solute-Containing Microdroplets.
    Bitterfield DL; Utoft A; Needham D
    Langmuir; 2016 Dec; 32(48):12749-12759. PubMed ID: 27802055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Osmotic Pressure on Water Transport in W(1)/O/W(2) Emulsions.
    Wen L; Papadopoulos KD
    J Colloid Interface Sci; 2001 Mar; 235(2):398-404. PubMed ID: 11254320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Droplet Consistency Monitoring and Cell Detection via Laser Excitation.
    Tkaczyk AH; Tkaczyk ER; Norris TB; Takayama S
    J Mech Med Biol; 2011 Mar; 11(1):1-14. PubMed ID: 29755161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System.
    Song Q; Chao Y; Zhang Y; Shum HC
    J Phys Chem B; 2021 Jan; 125(2):562-570. PubMed ID: 33416329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence visualization and modeling of a micelle-free zone formed at the interface between an oil and an aqueous micellar phase during interfacial surfactant transport.
    Bhole NS; Huang F; Maldarelli C
    Langmuir; 2010 Oct; 26(20):15761-78. PubMed ID: 20849093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces.
    Bazazi P; Hejazi SH
    J Colloid Interface Sci; 2021 Apr; 587():510-521. PubMed ID: 33406465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mechanism for user-friendly and self-activated microdroplet generation capable of programmable control.
    Jiang Y; Du L; Li Y; Mu Q; Cui Z; Zhou J; Wu W
    Analyst; 2018 Aug; 143(16):3798-3807. PubMed ID: 29953139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microdroplet dilutor for high-throughput screening.
    Niu X; Gielen F; Edel JB; deMello AJ
    Nat Chem; 2011 Jun; 3(6):437-42. PubMed ID: 21602857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Droplet Cluster with Distributed Evaporation Rates as a Model for Bioaerosols.
    Agrawal A; Gopu M; Mukherjee R; Mampallil D
    Langmuir; 2022 Apr; 38(15):4567-4577. PubMed ID: 35394793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.