BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 33551128)

  • 1. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy.
    Collier AY; Smith LA; Karumanchi SA
    Hum Immunol; 2021 May; 82(5):362-370. PubMed ID: 33551128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulation of Complement Activation and Placental Dysfunction: A Potential Target to Treat Preeclampsia?
    Pierik E; Prins JR; van Goor H; Dekker GA; Daha MR; Seelen MAJ; Scherjon SA
    Front Immunol; 2019; 10():3098. PubMed ID: 32010144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells.
    Wang W; Sung N; Gilman-Sachs A; Kwak-Kim J
    Front Immunol; 2020; 11():2025. PubMed ID: 32973809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular IL-10: a protective role in preeclampsia.
    Kalkunte S; Nevers T; Norris WE; Sharma S
    J Reprod Immunol; 2011 Mar; 88(2):165-9. PubMed ID: 21334073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array.
    Yagel S; Cohen SM; Goldman-Wohl D
    Am J Obstet Gynecol; 2022 Feb; 226(2S):S963-S972. PubMed ID: 33712272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in the understanding of the pathophysiology of immunologic maladaptation related to early-onset preeclampsia and metabolic syndrome related to late-onset preeclampsia.
    Robillard PY; Dekker G; Scioscia M; Saito S
    Am J Obstet Gynecol; 2022 Feb; 226(2S):S867-S875. PubMed ID: 35177223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia.
    Göhner C; Plösch T; Faas MM
    Placenta; 2017 Dec; 60 Suppl 1():S41-S51. PubMed ID: 28647398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single administration of ultra-low-dose lipopolysaccharide in rat early pregnancy induces TLR4 activation in the placenta contributing to preeclampsia.
    Xue P; Zheng M; Gong P; Lin C; Zhou J; Li Y; Shen L; Diao Z; Yan G; Sun H; Hu Y
    PLoS One; 2015; 10(4):e0124001. PubMed ID: 25853857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted inhibition of complement activation prevents features of preeclampsia in mice.
    Qing X; Redecha PB; Burmeister MA; Tomlinson S; D'Agati VD; Davisson RL; Salmon JE
    Kidney Int; 2011 Feb; 79(3):331-9. PubMed ID: 20944547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of new definitions of preeclampsia at term on identification of adverse maternal and perinatal outcomes.
    Lai J; Syngelaki A; Nicolaides KH; von Dadelszen P; Magee LA
    Am J Obstet Gynecol; 2021 May; 224(5):518.e1-518.e11. PubMed ID: 33166504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular immune responses in the pathophysiology of preeclampsia.
    Miller D; Motomura K; Galaz J; Gershater M; Lee ED; Romero R; Gomez-Lopez N
    J Leukoc Biol; 2022 Jan; 111(1):237-260. PubMed ID: 33847419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Complement System and Preeclampsia.
    Regal JF; Burwick RM; Fleming SD
    Curr Hypertens Rep; 2017 Oct; 19(11):87. PubMed ID: 29046976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The decidua of preeclamptic-like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy.
    Heyward CY; Sones JL; Lob HE; Yuen LC; Abbott KE; Huang W; Begun ZR; Butler SD; August A; Leifer CA; Davisson RL
    J Reprod Immunol; 2017 Apr; 120():27-33. PubMed ID: 28432903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders.
    Rana S; Burke SD; Karumanchi SA
    Am J Obstet Gynecol; 2022 Feb; 226(2S):S1019-S1034. PubMed ID: 33096092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy.
    Bai K; Li X; Zhong J; Ng EHY; Yeung WSB; Lee CL; Chiu PCN
    Front Immunol; 2021; 12():671093. PubMed ID: 34046039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges.
    Robertson SA; Green ES; Care AS; Moldenhauer LM; Prins JR; Hull ML; Barry SC; Dekker G
    Front Immunol; 2019; 10():478. PubMed ID: 30984163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets.
    Bakrania BA; George EM; Granger JP
    Am J Obstet Gynecol; 2022 Feb; 226(2S):S973-S987. PubMed ID: 33722383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Interleukin-10 in the Pathophysiology of Preeclampsia.
    Cubro H; Kashyap S; Nath MC; Ackerman AW; Garovic VD
    Curr Hypertens Rep; 2018 Apr; 20(4):36. PubMed ID: 29713810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Placental bed research: II. Functional and immunological investigations of the placental bed.
    Harris LK; Benagiano M; D'Elios MM; Brosens I; Benagiano G
    Am J Obstet Gynecol; 2019 Nov; 221(5):457-469. PubMed ID: 31288009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment?
    Prins JR; Eskandar S; Eggen BJL; Scherjon SA
    J Reprod Immunol; 2018 Apr; 126():18-22. PubMed ID: 29421625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.