These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 3355135)
1. Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high- or low-forage diets once daily. Leedle JA; Greening RC Appl Environ Microbiol; 1988 Feb; 54(2):502-6. PubMed ID: 3355135 [TBL] [Abstract][Full Text] [Related]
2. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high-forage diets. Leedle JA; Bryant MP; Hespell RB Appl Environ Microbiol; 1982 Aug; 44(2):402-12. PubMed ID: 6889837 [TBL] [Abstract][Full Text] [Related]
3. Effect of cattle breed and basal diet on digestibility, rumen bacterial communities, and eating and rumination activity. Carvalho PHV; Pinto ACJ; Millen DD; Felix TL J Anim Sci; 2020 May; 98(5):. PubMed ID: 32271920 [TBL] [Abstract][Full Text] [Related]
4. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis. Saro C; Ranilla MJ; Carro MD J Anim Sci; 2012 Dec; 90(12):4487-94. PubMed ID: 23100580 [TBL] [Abstract][Full Text] [Related]
5. Rumen microbial changes in cattle fed diets with or without salinomycin. Olumeyan DB; Nagaraja TG; Miller GW; Frey RA; Boyer JE Appl Environ Microbiol; 1986 Feb; 51(2):340-5. PubMed ID: 3954347 [TBL] [Abstract][Full Text] [Related]
6. 3-Nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique. Zhang XM; Gruninger RJ; Alemu AW; Wang M; Tan ZL; Kindermann M; Beauchemin KA J Dairy Sci; 2020 Oct; 103(10):8986-8997. PubMed ID: 32861497 [TBL] [Abstract][Full Text] [Related]
7. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Le Van TD; Robinson JA; Ralph J; Greening RC; Smolenski WJ; Leedle JA; Schaefer DM Appl Environ Microbiol; 1998 Sep; 64(9):3429-36. PubMed ID: 9726893 [TBL] [Abstract][Full Text] [Related]
8. Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration. Bharanidharan R; Arokiyaraj S; Kim EB; Lee CH; Woo YW; Na Y; Kim D; Kim KH PLoS One; 2018; 13(8):e0202446. PubMed ID: 30110381 [TBL] [Abstract][Full Text] [Related]
9. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. Rustomo B; AlZahal O; Odongo NE; Duffield TF; McBride BW J Dairy Sci; 2006 Dec; 89(12):4758-68. PubMed ID: 17106107 [TBL] [Abstract][Full Text] [Related]
10. Effects of the interaction of forage and supplement type on digestibility and ruminal fermentation in beef cattle. Stierwalt MR; Blalock HM; Felix TL J Anim Sci; 2017 Feb; 95(2):892-900. PubMed ID: 28380592 [TBL] [Abstract][Full Text] [Related]
11. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730 [TBL] [Abstract][Full Text] [Related]
12. Influence of mass of ruminal contents on voluntary intake and digesta passage in steers fed a forage and a concentrate diet. Whetsell MS; Prigge EC; Nestor EL J Anim Sci; 2004 Jun; 82(6):1806-17. PubMed ID: 15217009 [TBL] [Abstract][Full Text] [Related]
13. Effects of haylage and monensin supplementation on performance, carcass characteristics, and ruminal metabolism of feedlot cattle fed diets containing 60% dried distillers grains. Felix TL; Loerch SC J Anim Sci; 2011 Aug; 89(8):2614-23. PubMed ID: 21454865 [TBL] [Abstract][Full Text] [Related]
14. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage. Min BR; Pinchak WE; Anderson RC; Hume ME J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591 [TBL] [Abstract][Full Text] [Related]
15. Postprandial trends in estimated ruminal digesta polysaccharides and their relation to changes in bacterial groups and ruminal fluid characteristics. Leedle JA; Barsuhn K; Hespell RB J Anim Sci; 1986 Mar; 62(3):789-803. PubMed ID: 3700272 [TBL] [Abstract][Full Text] [Related]
16. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. Ramos S; Tejido ML; Martínez ME; Ranilla MJ; Carro MD J Anim Sci; 2009 Sep; 87(9):2924-34. PubMed ID: 19465498 [TBL] [Abstract][Full Text] [Related]
17. Using Sweet Bran instead of forage during grain adaptation in finishing feedlot cattle. Huls TJ; Luebbe MK; Watson AK; Meyer NF; Griffin WA; Klopfenstein TJ; Stock RA; Erickson GE J Anim Sci; 2016 Mar; 94(3):1149-58. PubMed ID: 27065276 [TBL] [Abstract][Full Text] [Related]
18. Composition of ruminal bacteria harvested from steers as influenced by dietary forage level and fat supplementation. Hussein HS; Merchen NR; Fahey GC J Anim Sci; 1995 Aug; 73(8):2469-73. PubMed ID: 8567484 [TBL] [Abstract][Full Text] [Related]
19. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. Lettat A; Hassanat F; Benchaar C J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352 [TBL] [Abstract][Full Text] [Related]
20. The effect of forage source and particle size on finishing yearling steer performance and ruminal metabolism. Shain DH; Stock RA; Klopfenstein TJ; Herold DW J Anim Sci; 1999 May; 77(5):1082-92. PubMed ID: 10340573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]