These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33551928)

  • 1. A Semi-supervised Learning-Based Diagnostic Classification Method Using Artificial Neural Networks.
    Xue K; Bradshaw LP
    Front Psychol; 2020; 11():618336. PubMed ID: 33551928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semi-supervised Learning Method for Q-Matrix Specification Under the DINA and DINO Model With Independent Structure.
    Wang W; Song L; Ding S; Wang T; Gao P; Xiong J
    Front Psychol; 2020; 11():2120. PubMed ID: 33013538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accuracy and consistency of mastery for each content domain using the Rasch and deterministic inputs, noisy “and” gate diagnostic classification models: a simulation study and a real-world analysis using data from the Korean Medical Licensing Examination.
    Seo DG; Kim JK
    J Educ Eval Health Prof; 2021; 18():15. PubMed ID: 34225413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Constrained Metropolis-Hastings Robbins-Monro Algorithm for Q Matrix Estimation in DINA Models.
    Liu CW; Andersson B; Skrondal A
    Psychometrika; 2020 Jun; 85(2):322-357. PubMed ID: 32632838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of item parameters and examinees' mastery probability in each domain of the Korean medical licensing examination using deterministic inputs, noisy and gate(DINA) model.
    Choi Y; Seo DG
    J Educ Eval Health Prof; 2020; 17():35. PubMed ID: 33197992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.
    Chiu CY; Köhn HF
    Psychometrika; 2016 Sep; 81(3):585-610. PubMed ID: 27230079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference.
    Oka M; Okada K
    Psychometrika; 2023 Mar; 88(1):302-331. PubMed ID: 36097246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised diagnostic classification of cognitive attributes using data augmentation.
    Yoon JY; Gweon G; Yoo YJ
    PLoS One; 2024; 19(1):e0296464. PubMed ID: 38180999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining Parameter Invariance in a General Diagnostic Classification Model.
    Ravand H; Baghaei P; Doebler P
    Front Psychol; 2019; 10():2930. PubMed ID: 31998189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring students' learning progressions in energy using cognitive diagnostic models.
    Zhou S; Traynor A
    Front Psychol; 2022; 13():892884. PubMed ID: 36017436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What can artificial neural networks teach us about neurodegenerative disorders with extrapyramidal features?
    Litvan I; DeLeo JM; Hauw JJ; Daniel SE; Jellinger K; McKee A; Dickson D; Horoupian DS; Lantos PL; Tabaton M
    Brain; 1996 Jun; 119 ( Pt 3)():831-9. PubMed ID: 8673495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Estimation of the DINA Q matrix.
    Chen Y; Culpepper SA; Chen Y; Douglas J
    Psychometrika; 2018 Mar; 83(1):89-108. PubMed ID: 28861685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized Adaptive Testing for Cognitively Based Multiple-Choice Data.
    Yigit HD; Sorrel MA; de la Torre J
    Appl Psychol Meas; 2019 Jul; 43(5):388-401. PubMed ID: 31235984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Cognitive Diagnosis of Chinese Listening Comprehension Ability Based on the G-DINA Model.
    Li L; An Y; Ren J; Wei X
    Front Psychol; 2021; 12():714568. PubMed ID: 34557134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A classification model for continuous responses: Identifying risk perception groups on health-related activities.
    de Oliveira ESB; Wang X; Bazán JL
    Biom J; 2023 Apr; 65(4):e2100222. PubMed ID: 36782079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model.
    de la Torre J; Qiu XL; Santos KC
    Psychometrika; 2022 Jun; 87(2):693-724. PubMed ID: 34843060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors.
    Tran QT; Alom MZ; Orr BA
    BMC Bioinformatics; 2022 Jun; 23(1):223. PubMed ID: 35676649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Item-Level Fit for the DINA Model.
    Wang C; Shu Z; Shang Z; Xu G
    Appl Psychol Meas; 2015 Oct; 39(7):525-538. PubMed ID: 29881024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.