These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33552130)

  • 1. The
    Boštjančić LL; Bonassin L; Anušić L; Lovrenčić L; Besendorfer V; Maguire I; Grandjean F; Austin CM; Greve C; Hamadou AB; Mlinarec J
    Front Genet; 2020; 11():611745. PubMed ID: 33552130
    [No Abstract]   [Full Text] [Related]  

  • 2. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae).
    Mata-Sucre Y; Sader M; Van-Lume B; Gagnon E; Pedrosa-Harand A; Leitch IJ; Lewis GP; Souza G
    Planta; 2020 Sep; 252(4):49. PubMed ID: 32918627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Cytogenetics in Four Leptodactylus Species (Amphibia, Anura, Leptodactylidae): Evidence of Inner Chromosomal Diversification in Highly Conserved Karyotypes.
    da Silva DS; da Silva Filho HF; Cioffi MB; de Oliveira EHC; Gomes AJB
    Cytogenet Genome Res; 2021; 161(1-2):52-62. PubMed ID: 33887732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Repetitive DNA Composition in the Natural Pesticide Producer
    Mlinarec J; Skuhala A; Jurković A; Malenica N; McCann J; Weiss-Schneeweiss H; Bohanec B; Besendorfer V
    Front Plant Sci; 2019; 10():613. PubMed ID: 31156676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis in
    João Da Silva M; Gazoni T; Haddad CFB; Parise-Maltempi PP
    Front Genet; 2023; 14():1101397. PubMed ID: 37065500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition.
    Van-Lume B; Mata-Sucre Y; Báez M; Ribeiro T; Huettel B; Gagnon E; Leitch IJ; Pedrosa-Harand A; Lewis GP; Souza G
    Planta; 2019 Dec; 250(6):2173-2186. PubMed ID: 31696317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Coding Mitogenome of the Freshwater Crayfish
    Alvanou MV; Apostolidis AP; Lattos A; Michaelidis B; Giantsis IA
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833421
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).
    Mlinarec J; Chester M; Siljak-Yakovlev S; Papes D; Leitch AR; Besendorfer V
    Chromosome Res; 2009; 17(3):331-46. PubMed ID: 19224381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of the repetitive DNA fraction in Cestrum, the genus with the largest genomes within Solanaceae.
    de Souza TB; Parteka LM; de Assis R; Vanzela ALL
    Mol Biol Rep; 2022 Sep; 49(9):8785-8799. PubMed ID: 35809181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes).
    Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y
    Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).
    He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W
    BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Cytogenetic Characterization of C-Band-Positive Heterochromatin of the Greater Long-Tailed Hamster (Tscherskia triton, Cricetinae).
    Kamimura E; Uno Y; Yamada K; Nishida C; Matsuda Y
    Cytogenet Genome Res; 2022; 162(6):323-333. PubMed ID: 36535261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations.
    Reinaldo Cruz Campos J; Ananias F; Aguirre Brasileiro C; Yamamoto M; Fernando Baptista Haddad C; Kasahara S
    Hereditas; 2009 May; 146(2):104-11. PubMed ID: 19490171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA.
    Samoluk SS; Chalup LMI; Chavarro C; Robledo G; Bertioli DJ; Jackson SA; Seijo G
    Planta; 2019 May; 249(5):1405-1415. PubMed ID: 30680457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations.
    Gazoni T; Gruber SL; Silva AP; Araújo OG; Narimatsu H; Strüssmann C; Haddad CF; Kasahara S
    BMC Genet; 2012 Dec; 13():109. PubMed ID: 23268622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives.
    Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF
    J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species.
    Samoluk SS; Vaio M; Ortíz AM; Chalup LMI; Robledo G; Bertioli DJ; Seijo G
    Planta; 2022 Jul; 256(3):50. PubMed ID: 35895167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans.
    Ferraz ME; Ribeiro T; Sader M; Nascimento T; Pedrosa-Harand A
    Chromosome Res; 2023 Oct; 31(4):30. PubMed ID: 37812264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing.
    da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP
    Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.