These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33552834)
1. Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. Koley T; Madaan S; Chowdhury SR; Kumar M; Kaur P; Singh TP; Ethayathulla AS 3 Biotech; 2021 Feb; 11(2):109. PubMed ID: 33552834 [TBL] [Abstract][Full Text] [Related]
2. Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. Zhang HL; Li YM; Sun J; Zhang YY; Wang TY; Sun MX; Wang MH; Yang YL; Hu XL; Tang YD; Zhao J; Cai X J Biol Chem; 2021; 296():100435. PubMed ID: 33610551 [TBL] [Abstract][Full Text] [Related]
3. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Kapczynski DR; Sweeney R; Spackman E; Pantin-Jackwood M; Suarez DL Virology; 2022 Apr; 569():1-12. PubMed ID: 35217403 [TBL] [Abstract][Full Text] [Related]
4. Differential susceptibility of SARS-CoV-2 in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterisation. Lean FZX; Núñez A; Spiro S; Priestnall SL; Vreman S; Bailey D; James J; Wrigglesworth E; Suarez-Bonnet A; Conceicao C; Thakur N; Byrne AMP; Ackroyd S; Delahay RJ; van der Poel WHM; Brown IH; Fooks AR; Brookes SM Transbound Emerg Dis; 2022 Jul; 69(4):2275-2286. PubMed ID: 34245662 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Rowland R; Brandariz-Nuñez A Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876 [TBL] [Abstract][Full Text] [Related]
6. Predicting susceptibility to SARS-CoV-2 infection based on structural differences in ACE2 across species. Alexander MR; Schoeder CT; Brown JA; Smart CD; Moth C; Wikswo JP; Capra JA; Meiler J; Chen W; Madhur MS FASEB J; 2020 Dec; 34(12):15946-15960. PubMed ID: 33015868 [TBL] [Abstract][Full Text] [Related]
7. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Hussain M; Jabeen N; Raza F; Shabbir S; Baig AA; Amanullah A; Aziz B J Med Virol; 2020 Sep; 92(9):1580-1586. PubMed ID: 32249956 [TBL] [Abstract][Full Text] [Related]
8. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Mehdipour AR; Hummer G Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33903171 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk. Chen P; Wang J; Xu X; Li Y; Zhu Y; Li X; Li M; Hao P Comput Biol Chem; 2022 Feb; 96():107613. PubMed ID: 34896769 [TBL] [Abstract][Full Text] [Related]
10. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Barton MI; MacGowan SA; Kutuzov MA; Dushek O; Barton GJ; van der Merwe PA Elife; 2021 Aug; 10():. PubMed ID: 34435953 [TBL] [Abstract][Full Text] [Related]
11. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Zhao P; Praissman JL; Grant OC; Cai Y; Xiao T; Rosenbalm KE; Aoki K; Kellman BP; Bridger R; Barouch DH; Brindley MA; Lewis NE; Tiemeyer M; Chen B; Woods RJ; Wells L bioRxiv; 2020 Jul; ():. PubMed ID: 32743578 [TBL] [Abstract][Full Text] [Related]
12. SARS CoV-2 Spike Protein Rendon-Marin S; Martinez-Gutierrez M; Whittaker GR; Jaimes JA; Ruiz-Saenz J Front Genet; 2021; 12():571707. PubMed ID: 33659022 [TBL] [Abstract][Full Text] [Related]
13. Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Veeramachaneni GK; Thunuguntla VBSC; Bobbillapati J; Bondili JS J Biomol Struct Dyn; 2021 Jul; 39(11):4015-4025. PubMed ID: 32448098 [TBL] [Abstract][Full Text] [Related]
14. Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals. Hayashi T; Abiko K; Mandai M; Yaegashi N; Konishi I Vet Q; 2020 Dec; 40(1):243-249. PubMed ID: 32921279 [TBL] [Abstract][Full Text] [Related]
15. A novel structure-based approach for identification of vertebrate susceptibility to SARS-CoV-2: Implications for future surveillance programmes. Kaushik R; Kumar N; Zhang KYJ; Srivastava P; Bhatia S; Malik YS Environ Res; 2022 Sep; 212(Pt C):113303. PubMed ID: 35460633 [TBL] [Abstract][Full Text] [Related]
16. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. Freitas FC; Ferreira PHB; Favaro DC; Oliveira RJ J Chem Inf Model; 2021 Mar; 61(3):1226-1243. PubMed ID: 33619962 [TBL] [Abstract][Full Text] [Related]
17. Analysis of ACE2 Gene-Encoded Proteins Across Mammalian Species. Cao Y; Sun Y; Tian X; Bai Z; Gong Y; Qi J; Liu D; Liu W; Li J Front Vet Sci; 2020; 7():457. PubMed ID: 32719819 [TBL] [Abstract][Full Text] [Related]
18. Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor. Lata S; Akif M J Cell Biochem; 2022 Jul; 123(7):1207-1221. PubMed ID: 35620980 [TBL] [Abstract][Full Text] [Related]
19. Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation. Rodriguez JA; Gonzalez J; Arboleda-Bustos CE; Mendoza N; Martinez C; Pinzon A Chem Biol Interact; 2022 Dec; 368():110244. PubMed ID: 36336003 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Hou Y; Peng C; Yu M; Li Y; Han Z; Li F; Wang LF; Shi Z Arch Virol; 2010 Oct; 155(10):1563-9. PubMed ID: 20567988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]