BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33552964)

  • 1. SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images.
    Zormpas-Petridis K; Noguera R; Ivankovic DK; Roxanis I; Jamin Y; Yuan Y
    Front Oncol; 2020; 10():586292. PubMed ID: 33552964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network.
    Khameneh FD; Razavi S; Kamasak M
    Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of BRCA Gene Mutation in Breast Cancer Based on Deep Learning and Histopathology Images.
    Wang X; Zou C; Zhang Y; Li X; Wang C; Ke F; Chen J; Wang W; Wang D; Xu X; Xie L; Zhang Y
    Front Genet; 2021; 12():661109. PubMed ID: 34354733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
    Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N
    Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Region and Nucleus Segmentation for Characterization of Tumor Infiltrating Lymphocytes in Breast Cancer.
    Amgad M; Sarkar A; Srinivas C; Redman R; Ratra S; Bechert CJ; Calhoun BC; Mrazeck K; Kurkure U; Cooper LA; Barnes M
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10956():. PubMed ID: 31997849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image analysis and machine learning in digital pathology: Challenges and opportunities.
    Madabhushi A; Lee G
    Med Image Anal; 2016 Oct; 33():170-175. PubMed ID: 27423409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Immune Content in Neuroblastoma: Deep Learning and Topological Data Analysis in Digital Pathology.
    Bussola N; Papa B; Melaiu O; Castellano A; Fruci D; Jurman G
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution-based distillation for efficient histology image classification.
    DiPalma J; Suriawinata AA; Tafe LJ; Torresani L; Hassanpour S
    Artif Intell Med; 2021 Sep; 119():102136. PubMed ID: 34531005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergizing Deep Learning-Enabled Preprocessing and Human-AI Integration for Efficient Automatic Ground Truth Generation.
    Collazo C; Vargas I; Cara B; Weinheimer CJ; Grabau RP; Goldgof D; Hall L; Wickline SA; Pan H
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for Segmentation and Classification of Digital Microscopy Tissue Images.
    Vu QD; Graham S; Kurc T; To MNN; Shaban M; Qaiser T; Koohbanani NA; Khurram SA; Kalpathy-Cramer J; Zhao T; Gupta R; Kwak JT; Rajpoot N; Saltz J; Farahani K
    Front Bioeng Biotechnol; 2019; 7():53. PubMed ID: 31001524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology.
    Zormpas-Petridis K; Failmezger H; Raza SEA; Roxanis I; Jamin Y; Yuan Y
    Front Oncol; 2019; 9():1045. PubMed ID: 31681583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Metastasis Risk in Pancreatic Neuroendocrine Tumors Using Deep Learning Image Analysis.
    Klimov S; Xue Y; Gertych A; Graham RP; Jiang Y; Bhattarai S; Pandol SJ; Rakha EA; Reid MD; Aneja R
    Front Oncol; 2020; 10():593211. PubMed ID: 33718106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of Stromal Development.
    Sertel O; Kong J; Shimada H; Catalyurek UV; Saltz JH; Gurcan MN
    Pattern Recognit; 2009 Jun; 42(6):1093-1103. PubMed ID: 20161324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to segment images with classification labels.
    Ciga O; Martel AL
    Med Image Anal; 2021 Feb; 68():101912. PubMed ID: 33260115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples.
    Turkki R; Linder N; Kovanen PE; Pellinen T; Lundin J
    J Pathol Inform; 2016; 7():38. PubMed ID: 27688929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
    Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P
    Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation.
    Kong J; Sertel O; Shimada H; Boyer KL; Saltz JH; Gurcan MN
    Pattern Recognit; 2009 Jun; 42(6):1080-1092. PubMed ID: 28626265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum resolution requirements of digital pathology images for accurate classification.
    Neary-Zajiczek L; Beresna L; Razavi B; Pawar V; Shaw M; Stoyanov D
    Med Image Anal; 2023 Oct; 89():102891. PubMed ID: 37536022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for Whole Slide Image Analysis: An Overview.
    Dimitriou N; Arandjelović O; Caie PD
    Front Med (Lausanne); 2019; 6():264. PubMed ID: 31824952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.