BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33553419)

  • 1. A novel BR-SMAD is required for larval development in barber's pole worm
    Li F; Qin P; Ye L; Gupta N; Hu M
    Microb Cell; 2020 Dec; 8(2):57-64. PubMed ID: 33553419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of an R-Smad homologue (Hco-DAF-8) from Haemonchus contortus.
    Li FF; Gasser RB; Liu F; Shan JN; Di WD; He L; Zhou CX; Wang CQ; Fang R; Hu M
    Parasit Vectors; 2020 Apr; 13(1):164. PubMed ID: 32245505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DAF-3 co-Smad molecule functions in Haemonchus contortus development.
    Di W; Liu L; Zhang T; Li F; He L; Wang C; Ahmad AA; Hassan M; Fang R; Hu M
    Parasit Vectors; 2019 Dec; 12(1):609. PubMed ID: 31881930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation.
    Li F; Lok JB; Gasser RB; Korhonen PK; Sandeman MR; Shi D; Zhou R; Li X; Zhou Y; Zhao J; Hu M
    Int J Parasitol; 2014 Jun; 44(7):485-96. PubMed ID: 24727120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus.
    He L; Liu H; Zhang BY; Li FF; Di WD; Wang CQ; Zhou CX; Liu L; Li TT; Zhang T; Fang R; Hu M
    Parasit Vectors; 2020 Jun; 13(1):326. PubMed ID: 32586367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TGF-β type I receptor-like molecule with a key functional role in Haemonchus contortus development.
    He L; Gasser RB; Korhonen PK; Di W; Li F; Zhang H; Li F; Zhou Y; Fang R; Zhao J; Hu M
    Int J Parasitol; 2018 Nov; 48(13):1023-1033. PubMed ID: 30266591
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Shi H; Huang X; Chen X; Yang Y; Wu F; Yao C; Ma G; Du A
    Front Cell Dev Biol; 2021; 9():753667. PubMed ID: 34805162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developmental lipidome of Haemonchus contortus.
    Wang T; Nie S; Ma G; Korhonen PK; Koehler AV; Ang CS; Reid GE; Williamson NA; Gasser RB
    Int J Parasitol; 2018 Oct; 48(12):887-895. PubMed ID: 30176232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro.
    He L; Gasser RB; Li T; Di W; Li F; Zhang H; Zhou C; Fang R; Hu M
    PLoS Negl Trop Dis; 2019 Dec; 13(12):e0007913. PubMed ID: 31790412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances.
    Mohandas N; Young ND; Jabbar A; Korhonen PK; Koehler AV; Amani P; Hall RS; Sternberg PW; Jex AR; Hofmann A; Gasser RB
    Biotechnol Adv; 2015 Dec; 33(8):1744-54. PubMed ID: 26239368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide RNA interference of the nhr gene family in barber's pole worm identified members crucial for larval viability in vitro.
    Du Z; Tong D; Chen X; Wu F; Jiang S; Zhang J; Yang Y; Wang R; Gantuya S; Davaajargal T; Lkhagvatseren S; Batsukh Z; Du A; Ma G
    Infect Genet Evol; 2024 Aug; 122():105609. PubMed ID: 38806077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Identification of CircRNAs of Infective Larvae and Adult Worms of Parasitic Nematode,
    Zhou C; Zhang Y; Wu S; Wang Z; Tuersong W; Wang C; Liu F; Hu M
    Front Cell Infect Microbiol; 2021; 11():764089. PubMed ID: 34881194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transcription factor DAF-5 functions in Haemonchus contortus development.
    Di W; Li F; He L; Wang C; Zhou C; Liu L; Ye L; Chen J; Hu M
    Parasit Vectors; 2021 Oct; 14(1):529. PubMed ID: 34641971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptidomics of
    Buzy A; Allain C; Harrington J; Lesuisse D; Mikol V; Bruhn DF; Maule AG; Guillemot JC
    ACS Omega; 2021 Apr; 6(15):10288-10305. PubMed ID: 34056183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus.
    Zheng Y; Ma G; Wang T; Hofmann A; Song J; Gasser RB; Young ND
    Int J Parasitol; 2022 Aug; 52(9):581-590. PubMed ID: 35853501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics.
    Gasser RB; Schwarz EM; Korhonen PK; Young ND
    Adv Parasitol; 2016; 93():519-67. PubMed ID: 27238012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echinococcus multilocularis: molecular characterization of EmSmadE, a novel BR-Smad involved in TGF-β and BMP signaling.
    Epping K; Brehm K
    Exp Parasitol; 2011 Oct; 129(2):85-94. PubMed ID: 21802416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus.
    Cantacessi C; Campbell BE; Young ND; Jex AR; Hall RS; Presidente PJ; Zawadzki JL; Zhong W; Aleman-Meza B; Loukas A; Sternberg PW; Gasser RB
    BMC Genomics; 2010 Apr; 11():266. PubMed ID: 20420710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomodulatory dynamics of excretory and secretory products on Th9 immune response during Haemonchus contortus infection in goat.
    Memon MA; Naqvi MA; Xin H; Meng L; Hasan MW; Haseeb M; Lakho SA; Aimulajiang K; Bu Y; Xu L; Song X; Li X; Yan R
    PLoS Negl Trop Dis; 2020 Apr; 14(4):e0008218. PubMed ID: 32243446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenophene and thiophene-core estrogen receptor ligands that inhibit motility and development of parasitic stages of Haemonchus contortus.
    Preston S; Luo J; Zhang Y; Jabbar A; Crawford S; Baell J; Hofmann A; Hu M; Zhou HB; Gasser RB
    Parasit Vectors; 2016 Jun; 9(1):346. PubMed ID: 27306029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.