BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33553747)

  • 1. Copper nickel co-impregnation of Moroccan yellow clay as promising catalysts for the catalytic wet peroxide oxidation of caffeine.
    Assila O; Zouheir M; Tanji K; Haounati R; Zerrouq F; Kherbeche A
    Heliyon; 2021 Jan; 7(1):e06069. PubMed ID: 33553747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and catalytic performance of copper-containing magnetic catalysts for degradation of azo dye (direct violet).
    Duan Q; Lee J; Chen H; Zheng Y
    Water Sci Technol; 2017 Dec; 76(11-12):3069-3078. PubMed ID: 29210692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Supported Perovskite Catalyst to Purify Membrane Concentrate of Coal Chemical Wastewater in UV-Catalytic Wet Hydrogen Peroxide Oxidation System.
    Zhang W; Liu Z; Chen P; Zhou G; Liu Z; Xu Y
    Int J Environ Res Public Health; 2021 May; 18(9):. PubMed ID: 34064535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan-Lam Coupling and Oxidations.
    Sharma S; Kaur M; Sharma C; Choudhary A; Paul S
    ACS Omega; 2021 Aug; 6(30):19529-19545. PubMed ID: 34368539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Cu-ZSM-5 catalysts by chemical vapour deposition for catalytic wet peroxide oxidation of phenol in a fixed bed reactor.
    He D; Zhang H; Yan Y
    R Soc Open Sci; 2018 Apr; 5(4):172364. PubMed ID: 29765683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation.
    Xie H; Zeng J; Zhou G
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):846-860. PubMed ID: 31814072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of photocatalytic degradation of methyl orange by impregnation of natural clay with nickel: optimization using the Box-Behnken design (BBD).
    Assimeddine M; Farid Z; Abdennouri M; Barka N; Lemdek EM; Sadiq M
    Environ Sci Pollut Res Int; 2023 May; 30(22):62494-62507. PubMed ID: 36943563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Chlorophenol degradation by catalytic wet air oxidation using copper supported on TiO
    García-Hernández LE; Frías-Márquez DM; Pacheco-Sosa JG; Cervantes-Uribe A; Arévalo-Pérez JC; Pérez-Vidal H; Silahua-Pavón AA; Lunagómez-Rocha MA; Torres-Torres JG
    Water Sci Technol; 2019 Sep; 80(5):911-919. PubMed ID: 31746798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Fe-Cu-kaolinite for catalytic wet peroxide oxidation of 4-chlorophenol.
    Zhou S; Xu R; He J; Huang Y; Cai Z; Xu M; Song Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4924-4933. PubMed ID: 29204938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Malachite Green Dye from Aqueous Solution by Catalytic Wet Oxidation Technique Using Ni/Kaolin as Catalyst.
    Moumen A; Belhocine Y; Sbei N; Rahali S; Ali FAM; Mechati F; Hamdaoui F; Seydou M
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tungsten-substituted molybdophosphoric acid impregnated with kaolin: effective catalysts for the synthesis of 3,4-dihydropyrimidin-2(1
    Aher DS; Khillare KR; Chavan LD; Shankarwar SG
    RSC Adv; 2021 Jan; 11(5):2783-2792. PubMed ID: 35424238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal.
    Zhou C; Sun L; Zhang A; Wu X; Ma C; Su S; Hu S; Xiang J
    Chemosphere; 2015 Apr; 125():16-24. PubMed ID: 25655441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.
    Ovejero G; Rodríguez A; Vallet A; García J
    Chemosphere; 2013 Jan; 90(4):1379-86. PubMed ID: 22960061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of solketal from glycerol using metal-modified ZSM-5 zeolite catalysts: process optimization.
    Gujar JP; Modhera B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28353-28367. PubMed ID: 38538995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor.
    Singh L; Rekha P; Chand S
    J Environ Manage; 2018 Jun; 215():1-12. PubMed ID: 29550542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PROMETHEUS: A Copper-Based Polymetallic Catalyst for Automotive Applications. Part I: Synthesis and Characterization.
    Yakoumis I
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.
    Kharaji AG; Shariati A; Ostadi M
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6841-7. PubMed ID: 25924339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO and CO₂ Methanation Over Ni/γ-Al₂O₃ Prepared by Deposition-Precipitation Method.
    Le TA; Kang JK; Lee SH; Park ED
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3252-3262. PubMed ID: 30744751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Soot Oxidation Activity of NiO-CeO
    Bendieb Aberkane A; Yeste MP; Fayçal D; Goma D; Cauqui MÁ
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.