BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33553747)

  • 21. Catalytic Performance of Supported Bimetallic Catalysts for Complete Oxidation of Toluene.
    Jung SC; Park YK; Jung HY; Kim SC
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4060-4066. PubMed ID: 33715745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of toluene in humid air by metal oxides supported on γ-alumina.
    Esmaeilirad M; Zabihi M; Shayegan J; Khorasheh F
    J Hazard Mater; 2017 Jul; 333():293-307. PubMed ID: 28371715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis.
    Wang J; Wang L; Li Y
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of the Coupling Co-Precipitation and Impregnation Catalyst Ag/Al₂O₃ with High Catalytic Performance in Selective Catalytic Reduction of NO with C₃H
    Xu J; Zhang C; Guo F; Chen Z; Xie J
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1170-1176. PubMed ID: 31383117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methane Decomposition Over ZrO
    Fakeeha AH; Kasim SO; Ibrahim AA; Al-Awadi AS; Alzahrani E; Abasaeed AE; Awadallah AE; Al-Fatesh AS
    Front Chem; 2020; 8():317. PubMed ID: 32411666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/γ-Al2O3 nano-catalysts.
    Mehrani R; Barati M; Tavasoli A; Karimi A
    Environ Technol; 2015; 36(9-12):1265-72. PubMed ID: 25387488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of the Mn/Co mixed oxide catalysts for low-temperature CO oxidation reaction.
    Ghiassee M; Rezaei M; Meshkani F; Mobini S
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):379-388. PubMed ID: 32808130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the catalytic behaviour of HKUST-1 by graphene oxide for phenol oxidation.
    Huang K; Xu Y
    Environ Technol; 2021 Feb; 42(5):694-704. PubMed ID: 31293218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective Oxidation of Cyclohexene over the Mesoporous H-Beta Zeolite on Copper/Nickel Bimetal Catalyst in Continuous Reactor.
    Tumuluri K; Abu-Dahrieh JK; Mathiyalagan K; Munusamy Kalidhas A; Perumal T; Srinivasan S; Mangesh VL; Siva Kumar N; Alreshaidan SB; Chandrasekaran K; Arunachalam V; Al-Fatesh AS
    ACS Omega; 2024 Jun; 9(24):25800-25811. PubMed ID: 38911787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Catalytic Efficiency of a Nanosized Copper-Based Catalyst for Automotives: A Physicochemical Characterization.
    Soto Beobide A; Moschovi AM; Mathioudakis GN; Kourtelesis M; Lada ZG; Andrikopoulos KS; Sygellou L; Dracopoulos V; Yakoumis I; Voyiatzis GA
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.
    Deka B; Bhattacharyya KG
    J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. K
    Snoussi Y; Gonzalez-Miranda D; Pedregal T; Besbes N; Bouaid A; Ladero M
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Copper-Based Catalysts for Obtaining Methanol by the Chemical Impregnation Method.
    Oubraham A; Iordache M; Marin E; Sisu C; Borta S; Soare A; Capris C; Marinoiu A
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CuAPO-5 as a Multiphase Catalyst for Synthesis of Verbenone from α-Pinene.
    Wang H; Cheng H; Lai F; Xiong D
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.
    Lee SM; Park KH; Kim SS; Kwon DW; Hong SC
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1085-92. PubMed ID: 23019822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology.
    Amanpour J; Salari D; Niaei A; Mousavi SM; Panahi PN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):879-86. PubMed ID: 23485237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of carbon nanofibers grown over Ni and Ni-cu catalysts.
    Echegoyen Y; Suelves I; Lázaro MJ; Moliner R; Palacios JM; Müller JO; Su D; Schlögl R
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4170-9. PubMed ID: 19916425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of titania structure on the properties of its supported copper oxide catalysts.
    Zhu H; Dong L; Chen Y
    J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of Cu-Zn/TiO
    Rana AG; Ahmad W; Al-Matar A; Shawabkeh R; Aslam Z
    Environ Technol; 2017 May; 38(9):1085-1092. PubMed ID: 27494377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.