These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33553921)

  • 21. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiple kernel learning algorithm for drug-target interaction prediction.
    Nascimento AC; PrudĂȘncio RB; Costa IG
    BMC Bioinformatics; 2016 Jan; 17():46. PubMed ID: 26801218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning.
    Zhao BW; You ZH; Hu L; Guo ZH; Wang L; Chen ZH; Wong L
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heter-LP: A Heterogeneous Label Propagation Method for Drug Repositioning.
    Lotfi Shahreza M; Ghadiri N; Green JR
    Methods Mol Biol; 2019; 1903():291-316. PubMed ID: 30547450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels.
    Yan C; Duan G; Pan Y; Wu FX; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):538. PubMed ID: 31874609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting drug-drug interactions by graph convolutional network with multi-kernel.
    Wang F; Lei X; Liao B; Wu FX
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique.
    Hao M; Wang Y; Bryant SH
    Anal Chim Acta; 2016 Feb; 909():41-50. PubMed ID: 26851083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting drug-target interactions by dual-network integrated logistic matrix factorization.
    Hao M; Bryant SH; Wang Y
    Sci Rep; 2017 Jan; 7():40376. PubMed ID: 28079135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug response prediction using graph representation learning and Laplacian feature selection.
    Xie M; Lei X; Zhong J; Ouyang J; Li G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions.
    Shen C; Ding Y; Tang J; Guo F
    Front Genet; 2018; 9():716. PubMed ID: 30697228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network.
    Cao J; Chen Q; Qiu J; Wang Y; Lan W; Du X; Tan K
    J Cell Mol Med; 2024 Apr; 28(7):e18224. PubMed ID: 38509739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting drug-target interactions using matrix factorization with self-paced learning and dual similarity information.
    Ling C; Zeng T; Dang Q; Liang Y; Liu X; Xie S
    Technol Health Care; 2024; 32(S1):49-64. PubMed ID: 38759038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques.
    Thafar MA; Olayan RS; Ashoor H; Albaradei S; Bajic VB; Gao X; Gojobori T; Essack M
    J Cheminform; 2020 Jun; 12(1):44. PubMed ID: 33431036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of drug-target interactions via multiple kernel-based triple collaborative matrix factorization.
    Ding Y; Tang J; Guo F; Zou Q
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35134117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.