These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33553950)

  • 1. Fe
    Qu CY; Zhou LS; Shu LH; Huang Q
    ACS Omega; 2021 Feb; 6(4):3330-3335. PubMed ID: 33553950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B
    Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.
    Li RD; Wang Q; Yin BC; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():995-1000. PubMed ID: 26547010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification.
    Xu Y; Wang Y; Liu S; Yu J; Wang H; Guo Y; Huang J
    Biosens Bioelectron; 2016 Jul; 81():236-241. PubMed ID: 26954789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155.
    Xu S; Chang Y; Wu Z; Li Y; Yuan R; Chai Y
    Biosens Bioelectron; 2020 Feb; 149():111848. PubMed ID: 31726271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip.
    Yao M; Lv X; Deng Y; Rasheed M
    Anal Chim Acta; 2019 May; 1055():115-125. PubMed ID: 30782362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA.
    Niu C; Liu J; Xing X; Zhang C
    Biodes Res; 2023; 5():0010. PubMed ID: 37849464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.
    Li W; Jiang W; Ding Y; Wang L
    Biosens Bioelectron; 2015 Sep; 71():401-406. PubMed ID: 25950935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR).
    Xu M; Ye J; Yang D; Abdullah Al-Maskri AA; Hu H; Jung C; Cai S; Zeng S
    Anal Chim Acta; 2019 Oct; 1077():208-215. PubMed ID: 31307711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification.
    Liu YQ; Zhang M; Yin BC; Ye BC
    Anal Chem; 2012 Jun; 84(12):5165-9. PubMed ID: 22655700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.
    Xu F; Dong H; Cao Y; Lu H; Meng X; Dai W; Zhang X; Al-Ghanim KA; Mahboob S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33499-33505. PubMed ID: 27960393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification.
    Zhou C; Huang R; Zhou X; Xing D
    Talanta; 2020 Aug; 216():120954. PubMed ID: 32456939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Signal Amplification Strategy for Sensitive MicroRNA Detection Based on Rolling Circle Amplification and Enzymatic Repairing Amplification.
    Xiao F; Liu J; Guo Q; Du Z; Li H; Sun C; Du W
    ACS Omega; 2020 Dec; 5(50):32738-32743. PubMed ID: 33376911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay.
    Bi S; Cui Y; Li L
    Anal Chim Acta; 2013 Jan; 760():69-74. PubMed ID: 23265735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification.
    Tian Q; Wang Y; Deng R; Lin L; Liu Y; Li J
    Nanoscale; 2015 Jan; 7(3):987-93. PubMed ID: 25470558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma-Mass Spectrometry.
    Kang Q; He M; Chen B; Xiao G; Hu B
    Anal Chem; 2021 Jan; 93(2):737-744. PubMed ID: 33284580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating CRISPR-Cas12a with a DNA circuit as a generic sensing platform for amplified detection of microRNA.
    Peng S; Tan Z; Chen S; Lei C; Nie Z
    Chem Sci; 2020 Jul; 11(28):7362-7368. PubMed ID: 33133487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templation and Concentration Drive Conversion Between a Fe
    Zhang D; Gan Q; Plajer AJ; Lavendomme R; Ronson TK; Lu Z; Jensen JD; Laursen BW; Nitschke JR
    J Am Chem Soc; 2022 Jan; 144(3):1106-1112. PubMed ID: 35014803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.