These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33554445)

  • 1. Flash forward genetics: new twists in transcription across evolutionary boundaries.
    Dotto GP; Missero C
    EMBO Rep; 2021 Mar; 22(3):e52152. PubMed ID: 33554445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling by disruption and a selected-for partner for the nude locus.
    Li J; Lee YK; Fu W; Whalen AM; Estable MC; Raftery LA; White K; Weiner L; Brissette JL
    EMBO Rep; 2021 Mar; 22(3):e49804. PubMed ID: 33369874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of
    Larsen BM; Cowan JE; Wang Y; Tanaka Y; Zhao Y; Voisin B; Constantinides MG; Nagao K; Belkaid Y; Awasthi P; Takahama Y; Bhandoola A
    J Immunol; 2019 Aug; 203(3):686-695. PubMed ID: 31243087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from nudity: lessons from the nude phenotype.
    Mecklenburg L; Tychsen B; Paus R
    Exp Dermatol; 2005 Nov; 14(11):797-810. PubMed ID: 16232301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation.
    Potter CS; Pruett ND; Kern MJ; Baybo MA; Godwin AR; Potter KA; Peterson RL; Sundberg JP; Awgulewitsch A
    J Invest Dermatol; 2011 Apr; 131(4):828-37. PubMed ID: 21191399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How hair gets its pigment.
    Barsh G; Cotsarelis G
    Cell; 2007 Sep; 130(5):779-81. PubMed ID: 17803901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium.
    Guo J; Rahman M; Cheng L; Zhang S; Tvinnereim A; Su DM
    J Mol Med (Berl); 2011 Mar; 89(3):263-77. PubMed ID: 21109991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene.
    Cunliffe VT; Furley AJ; Keenan D
    Mamm Genome; 2002 May; 13(5):245-52. PubMed ID: 12016512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches.
    Gallo V; Cirillo E; Giardino G; Pignata C
    J Clin Immunol; 2017 Nov; 37(8):751-758. PubMed ID: 28932937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foxn1 is required for tissue assembly and desmosomal cadherin expression in the hair shaft.
    Johns SA; Soullier S; Rashbass P; Cunliffe VT
    Dev Dyn; 2005 Apr; 232(4):1062-8. PubMed ID: 15739220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation.
    Shirokova V; Biggs LC; Jussila M; Ohyama T; Groves AK; Mikkola ML
    Stem Cells; 2016 Jul; 34(7):1896-908. PubMed ID: 26992132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental expression of chicken FOXN1 and putative target genes during feather development.
    Darnell DK; Zhang LS; Hannenhalli S; Yaklichkin SY
    Int J Dev Biol; 2014; 58(1):57-64. PubMed ID: 24860996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hairless down-regulates expression of Msx2 and its related target genes in hair follicles.
    Kim BK; Yoon SK
    J Dermatol Sci; 2013 Sep; 71(3):203-9. PubMed ID: 23702391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dedicated epithelial recipient cells determine pigmentation patterns.
    Weiner L; Han R; Scicchitano BM; Li J; Hasegawa K; Grossi M; Lee D; Brissette JL
    Cell; 2007 Sep; 130(5):932-42. PubMed ID: 17803914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis.
    Hu B; Lefort K; Qiu W; Nguyen BC; Rajaram RD; Castillo E; He F; Chen Y; Angel P; Brisken C; Dotto GP
    Genes Dev; 2010 Jul; 24(14):1519-32. PubMed ID: 20634318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture.
    Müller SM; Terszowski G; Blum C; Haller C; Anquez V; Kuschert S; Carmeliet P; Augustin HG; Rodewald HR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10587-92. PubMed ID: 16027358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis.
    Brancaccio A; Minichiello A; Grachtchouk M; Antonini D; Sheng H; Parlato R; Dathan N; Dlugosz AA; Missero C
    Hum Mol Genet; 2004 Nov; 13(21):2595-606. PubMed ID: 15367491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foxn1[Cre] Expression in the Male Germline.
    Shi J; Getun I; Torres B; Petrie HT
    PLoS One; 2016; 11(11):e0166967. PubMed ID: 27880796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the satin hair mutant gene Foxq1 is among multiple and functionally diverse regulatory targets for Hoxc13 during hair follicle differentiation.
    Potter CS; Peterson RL; Barth JL; Pruett ND; Jacobs DF; Kern MJ; Argraves WS; Sundberg JP; Awgulewitsch A
    J Biol Chem; 2006 Sep; 281(39):29245-55. PubMed ID: 16835220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice.
    Ruan L; Zhang Z; Mu L; Burnley P; Wang L; Coder B; Zhuge Q; Su DM
    Cell Death Dis; 2014 Oct; 5(10):e1457. PubMed ID: 25299782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.