These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33554996)

  • 1. Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation.
    Johnson LC; Zia RN
    Soft Matter; 2021 Apr; 17(14):3784-3797. PubMed ID: 33554996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.
    Johnson LC; Landrum BJ; Zia RN
    Soft Matter; 2018 Jun; 14(24):5048-5068. PubMed ID: 29869670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitrification is a spontaneous non-equilibrium transition driven by osmotic pressure.
    Wang JG; Zia RN
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33724236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitational collapse of colloidal gels: non-equilibrium phase separation driven by osmotic pressure.
    Padmanabhan P; Zia R
    Soft Matter; 2018 May; 14(17):3265-3287. PubMed ID: 29637976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation.
    Johnson LC; Zia RN
    Soft Matter; 2021 Aug; 17(31):7418. PubMed ID: 34318858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic structural origin behind slowing down of colloidal phase separation approaching gelation.
    Tateno M; Yanagishima T; Tanaka H
    J Chem Phys; 2022 Feb; 156(8):084904. PubMed ID: 35232176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical aging and phase behavior of multiresponsive microgel colloidal dispersions.
    Meng Z; Cho JK; Breedveld V; Lyon LA
    J Phys Chem B; 2009 Apr; 113(14):4590-9. PubMed ID: 19298093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior and surface tension of soft active Brownian particles.
    Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D
    Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak and Strong Gels and the Emergence of the Amorphous Solid State.
    Douglas JF
    Gels; 2018 Feb; 4(1):. PubMed ID: 30674795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restructuring of colloidal cakes during dewatering.
    Madeline JB; Meireles M; Bourgerette C; Botet R; Schweins R; Cabane B
    Langmuir; 2007 Feb; 23(4):1645-58. PubMed ID: 17279641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life and death of colloidal bonds control the rate-dependent rheology of gels.
    Nabizadeh M; Jamali S
    Nat Commun; 2021 Jul; 12(1):4274. PubMed ID: 34257286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a flow-dependent phase-stability criterion: Osmotic pressure in sticky flowing suspensions.
    Huang DE; Zia RN
    J Chem Phys; 2021 Oct; 155(13):134113. PubMed ID: 34624990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning colloidal gels by shear.
    Koumakis N; Moghimi E; Besseling R; Poon WC; Brady JF; Petekidis G
    Soft Matter; 2015 Jun; 11(23):4640-8. PubMed ID: 25962849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological origin of phase separation in hydrated gels.
    Zhao C; Zhou W; Zhou Q; Wang Z; Sant G; Guo L; Bauchy M
    J Colloid Interface Sci; 2021 May; 590():199-209. PubMed ID: 33548603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of the behavior of colloidal gel networks at low volume fraction.
    Hatami-Marbini H
    J Phys Condens Matter; 2020 Jun; 32(27):275101. PubMed ID: 32254046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique route of colloidal phase separation yields stress-free gels.
    Tsurusawa H; Arai S; Tanaka H
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of equilibrium-linked colloidal networks.
    Kwon T; Wilcoxson TA; Milliron DJ; Truskett TM
    J Chem Phys; 2022 Nov; 157(18):184902. PubMed ID: 36379769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yielding in colloidal gels due to nonlinear microstructure bending mechanics.
    Furst EM; Pantina JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):050402. PubMed ID: 17677010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.