BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 33555052)

  • 1. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator.
    Khan AU; Simiele EA; Lotey R; DeWerd LA; Yadav P
    Med Phys; 2021 Apr; 48(4):1967-1982. PubMed ID: 33555052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a 1.5 T MR-Linac full accelerator head and cryostat model for Monte Carlo dose simulations.
    Friedel M; Nachbar M; Mönnich D; Dohm O; Thorwarth D
    Med Phys; 2019 Nov; 46(11):5304-5313. PubMed ID: 31532829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
    Kaluarachchi MM; Saleh ZH; Schwer ML; Klein EE
    Med Phys; 2020 Aug; 47(8):3586-3599. PubMed ID: 32324289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B
    Med Phys; 2016 Feb; 43(2):894-907. PubMed ID: 26843250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-field measurement and Monte Carlo model validation of a novel image-guided radiotherapy system.
    Shi M; Chuang CF; Kovalchuk N; Bush K; Zaks D; Xing L; Surucu M; Han B
    Med Phys; 2021 Nov; 48(11):7450-7460. PubMed ID: 34628666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking of Monte Carlo model of Siemens Oncor® linear accelerator for 18MV photon beam: Determination of initial electron beam parameters.
    Najafzadeh M; Hoseini-Ghafarokhi M; Bolagh RSM; Haghparast M; Zarifi S; Nickfarjam A; Farhood B; Chow JCL
    J Xray Sci Technol; 2019; 27(6):1047-1070. PubMed ID: 31498147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of the optimal pretarget electron beam parameters in a Monte Carlo virtual linac model through simulated annealing.
    Bush K; Zavgorodni S; Beckham W
    Med Phys; 2009 Jun; 36(6):2309-19. PubMed ID: 19610319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode.
    Feng Z; Yue H; Zhang Y; Wu H; Cheng J; Su X
    Radiat Oncol; 2016 Feb; 11():30. PubMed ID: 26921246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters.
    Almberg SS; Frengen J; Kylling A; Lindmo T
    Med Phys; 2012 Jan; 39(1):40-7. PubMed ID: 22225273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension and validation of a GPU-Monte Carlo dose engine gDPM for 1.5 T MR-LINAC online independent dose verification.
    Li Y; Ding S; Wang B; Liu H; Huang X; Song T
    Med Phys; 2021 Oct; 48(10):6174-6183. PubMed ID: 34387872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac.
    Gete E; Duzenli C; Milette MP; Mestrovic A; Hyde D; Bergman AM; Teke T
    Med Phys; 2013 Feb; 40(2):021707. PubMed ID: 23387730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.
    Böhlen TT; Germond JF; Traneus E; Bourhis J; Vozenin MC; Bailat C; Bochud F; Moeckli R
    Med Phys; 2021 Jul; 48(7):3958-3967. PubMed ID: 33884618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation.
    Najafzadeh M; Nickfarjam A; Jabbari K; Markel D; Chow JCL; Takabi FS
    J Xray Sci Technol; 2019; 27(1):161-175. PubMed ID: 30614811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of 6-MV dynamic wave VMAT deliveries by Vero4DRT linear accelerator using EGSnrc moving sources.
    Rostamzadeh M; Ishihara Y; Nakamura M; Popescu IA; Mestrovic A; Gete E; Fedrigo R; Bergman AM
    J Appl Clin Med Phys; 2020 Dec; 21(12):206-218. PubMed ID: 33219743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator.
    Lee B; Jeong S; Chung K; Yoon M; Park HC; Han Y; Jung SH
    J Appl Clin Med Phys; 2019 Oct; 20(10):101-110. PubMed ID: 31544350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields.
    Brost EE; Wan Chan Tseung H; Antolak JA
    Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation.
    Kim H; Kim B; Baek J; Oh Y; Yun S; Jang H
    Br J Radiol; 2018 Apr; 91(1084):20170376. PubMed ID: 29338304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo and analytic modeling of an Elekta Infinity linac with Agility MLC: Investigating the significance of accurate model parameters for small radiation fields.
    Gholampourkashi S; Cygler JE; Belec J; Vujicic M; Heath E
    J Appl Clin Med Phys; 2019 Jan; 20(1):55-67. PubMed ID: 30408308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.