BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33555053)

  • 1. The eukaryotic replisome tolerates leading-strand base damage by replicase switching.
    Guilliam TA; Yeeles JT
    EMBO J; 2021 Mar; 40(5):e107037. PubMed ID: 33555053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
    Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV
    Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart.
    Guilliam TA; Yeeles JTP
    Nat Struct Mol Biol; 2020 May; 27(5):450-460. PubMed ID: 32341533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication.
    Yeeles JTP; Janska A; Early A; Diffley JFX
    Mol Cell; 2017 Jan; 65(1):105-116. PubMed ID: 27989442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases kappa and zeta in human cells.
    Yoon JH; Bhatia G; Prakash S; Prakash L
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14116-21. PubMed ID: 20660785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex.
    Dmowski M; Jedrychowska M; Makiela-Dzbenska K; Denkiewicz-Kruk M; Sharma S; Chabes A; Araki H; Fijalkowska IJ
    DNA Repair (Amst); 2022 Feb; 110():103272. PubMed ID: 35038632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
    McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA
    Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases.
    Yurieva O; O'Donnell M
    Nucleus; 2016 Jul; 7(4):360-8. PubMed ID: 27416113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of the non-catalytic subunit Dpb2 of DNA Pol ɛ results in increased involvement of Pol δ on the leading strand.
    Dmowski M; Makiela-Dzbenska K; Sharma S; Chabes A; Fijalkowska IJ
    DNA Repair (Amst); 2023 Sep; 129():103541. PubMed ID: 37481989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ.
    Tellier-Lebegue C; Dizet E; Ma E; Veaute X; Coïc E; Charbonnier JB; Maloisel L
    PLoS Genet; 2017 Dec; 13(12):e1007119. PubMed ID: 29281621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions.
    Kusumoto R; Masutani C; Iwai S; Hanaoka F
    Biochemistry; 2002 May; 41(19):6090-9. PubMed ID: 11994004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation.
    Georgescu RE; Schauer GD; Yao NY; Langston LD; Yurieva O; Zhang D; Finkelstein J; O'Donnell ME
    Elife; 2015 Apr; 4():e04988. PubMed ID: 25871847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae.
    Siebler HM; Lada AG; Baranovskiy AG; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2014 Dec; 24():138-149. PubMed ID: 24819597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells.
    Kapadia N; El-Hajj ZW; Zheng H; Beattie TR; Yu A; Reyes-Lamothe R
    Mol Cell; 2020 Oct; 80(1):114-126.e8. PubMed ID: 32916094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ.
    Dieckman LM; Washington MT
    DNA Repair (Amst); 2013 May; 12(5):367-76. PubMed ID: 23506842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Replication Fork Progression Following Helicase-Polymerase Uncoupling in Eukaryotes.
    Taylor MRG; Yeeles JTP
    J Mol Biol; 2019 May; 431(10):2040-2049. PubMed ID: 30894292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols α, δ, and ϵ in the replisome for leading-strand and lagging-strand DNA replication.
    Kunkel TA; Burgers PMJ
    Bioessays; 2017 Aug; 39(8):. PubMed ID: 28749073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome.
    Zhou JC; Janska A; Goswami P; Renault L; Abid Ali F; Kotecha A; Diffley JFX; Costa A
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4141-4146. PubMed ID: 28373564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenic Effects of a 2-Deoxyribonolactone-Thymine Glycol Tandem DNA Lesion in Human Cells.
    Naldiga S; Huang H; Greenberg MM; Basu AK
    Biochemistry; 2020 Feb; 59(4):417-424. PubMed ID: 31860280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.