These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33555186)

  • 1. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices.
    Wang Q; Steinbock O
    Langmuir; 2021 Feb; 37(7):2485-2493. PubMed ID: 33555186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of iron-phosphate-silicate chemical garden structures.
    Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I
    Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability.
    Jones DEH; Walter U
    J Colloid Interface Sci; 1998 Jul; 203(2):286-93. PubMed ID: 9705766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plausibility of the Formose Reaction in Alkaline Hydrothermal Vent Environments.
    Omran A
    Orig Life Evol Biosph; 2023 Jun; 53(1-2):113-125. PubMed ID: 32749559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion and precipitation processes in iron-based silica gardens.
    Glaab F; Rieder J; García-Ruiz JM; Kunz W; Kellermeier M
    Phys Chem Chem Phys; 2016 Sep; 18(36):24850-8. PubMed ID: 27397509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral precipitation patterns in confined chemical gardens.
    Haudin F; Cartwright JH; Brau F; De Wit A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17363-7. PubMed ID: 25385581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.
    Ding Y; Batista B; Steinbock O; Cartwright JH; Cardoso SS
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9182-6. PubMed ID: 27486248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape Evolution of Precipitate Membranes in Flow Systems.
    Nogueira JA; Batista BC; Cooper MA; Steinbock O
    J Phys Chem B; 2023 Feb; 127(6):1471-1478. PubMed ID: 36745753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic labyrinth self-assembled by a chemical garden.
    Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE
    Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.
    Cartwright JH; Escribano B; Sainz-Díaz CI; Stodieck LS
    Langmuir; 2011 Apr; 27(7):3294-300. PubMed ID: 21391639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments.
    Barge LM; Krause FC; Jones JP; Billings K; Sobron P
    Astrobiology; 2018 Sep; 18(9):1147-1158. PubMed ID: 30106308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure oscillations in a chemical garden.
    Pantaleone J; Toth A; Horvath D; RoseFigura L; Morgan W; Maselko J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056221. PubMed ID: 19518550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life.
    Borrego-Sánchez A; Gutiérrez-Ariza C; Sainz-Díaz CI; Cartwright JHE
    Langmuir; 2022 Aug; 38(34):10538-10547. PubMed ID: 35974697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Production of Pyrophosphate Catalyzed by Mineral Membranes with Steep pH Gradients.
    Wang Q; Barge LM; Steinbock O
    Chemistry; 2019 Mar; 25(18):4732-4739. PubMed ID: 30725519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes.
    Barge LM; Abedian Y; Russell MJ; Doloboff IJ; Cartwright JH; Kidd RD; Kanik I
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8184-7. PubMed ID: 25968422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and Dynamic Behavior of Macroscopic Aluminum-Based Silica Gardens.
    Rieder J; Nützl M; Kunz W; Kellermeier M
    Langmuir; 2022 Aug; 38(34):10392-10399. PubMed ID: 35976253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations.
    Cartwright JH; Escribano B; Sainz-Daz CI
    Langmuir; 2011 Apr; 27(7):3286-93. PubMed ID: 21391635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coiling of Secondary Tubes Formed from the Colloidal Exhaust of Primary Chemical Gardens.
    Siev EA; Batista BC; Steinbock O
    J Phys Chem B; 2024 Feb; 128(8):2028-2036. PubMed ID: 38378455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants.
    Spanoudaki D; Brau F; De Wit A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1684-1693. PubMed ID: 33416815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems.
    Barge LM; Abedian Y; Doloboff IJ; Nuñez JE; Russell MJ; Kidd RD; Kanik I
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.