These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33555279)

  • 1. Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting.
    Zhou Z; Li L; Niu Y; Song H; Xing XS; Guo Z; Wu S
    Dalton Trans; 2021 Feb; 50(8):2936-2944. PubMed ID: 33555279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al
    Zhou Z; Wu S; Li L; Li L; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underlayer engineering into the Sn-doped hematite photoanode for facilitating carrier extraction.
    Zhou Z; Wu S; Xiao C; Li L; Li X
    Phys Chem Chem Phys; 2020 Apr; 22(14):7306-7313. PubMed ID: 32211650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-improvement of solar water oxidation for the continuously-irradiated hematite photoanode.
    Zhou Z; Wu S; Xiao C; Li L; Shao W; Ding H; Wen L; Li X
    Dalton Trans; 2019 Oct; 48(40):15151-15159. PubMed ID: 31565712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.
    Xiong D; Li W; Wang X; Liu L
    Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin CoO
    Du C; Wang J; Liu X; Yang J; Cao K; Wen Y; Chen R; Shan B
    Phys Chem Chem Phys; 2017 May; 19(21):14178-14184. PubMed ID: 28530305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting.
    Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR
    ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy of Ultrathin CoO
    Mao L; Huang YC; Deng H; Meng F; Fu Y; Wang Y; Li M; Zhang Q; Dong CL; Gu L; Shen S
    Small; 2023 Feb; 19(7):e2203838. PubMed ID: 36511178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional citrate-Ni
    Wang P; Li F; Long X; Wang T; Chai H; Yang H; Li S; Ma J; Jin J
    Nanoscale; 2021 Sep; 13(33):14197-14206. PubMed ID: 34477701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.