These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
584 related articles for article (PubMed ID: 33555354)
1. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Nam JG; Hong JH; Kim DS; Oh J; Goo JM Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354 [TBL] [Abstract][Full Text] [Related]
2. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Nam JG; Ahn C; Choi H; Hong W; Park J; Kim JH; Goo JM Eur Radiol; 2021 Jul; 31(7):5139-5147. PubMed ID: 33415436 [TBL] [Abstract][Full Text] [Related]
3. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH; Yoon HJ; Lee E; Kim I; Cha YK; Bak SH Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [TBL] [Abstract][Full Text] [Related]
4. Image Quality Improvement of Low-dose Abdominal CT using Deep Learning Image Reconstruction Compared with the Second Generation Iterative Reconstruction. Kang HJ; Lee JM; Park SJ; Lee SM; Joo I; Yoon JH Curr Med Imaging; 2024; 20():e250523217310. PubMed ID: 37231764 [TBL] [Abstract][Full Text] [Related]
5. Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm. Caruso D; De Santis D; Del Gaudio A; Guido G; Zerunian M; Polici M; Valanzuolo D; Pugliese D; Persechino R; Cremona A; Barbato L; Caloisi A; Iannicelli E; Laghi A Eur Radiol; 2024 Apr; 34(4):2384-2393. PubMed ID: 37688618 [TBL] [Abstract][Full Text] [Related]
6. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Parakh A; Cao J; Pierce TT; Blake MA; Savage CA; Kambadakone AR Eur Radiol; 2021 Nov; 31(11):8342-8353. PubMed ID: 33893535 [TBL] [Abstract][Full Text] [Related]
7. A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results. Chu B; Gan L; Shen Y; Song J; Liu L; Li J; Liu B J Digit Imaging; 2023 Dec; 36(6):2347-2355. PubMed ID: 37580484 [TBL] [Abstract][Full Text] [Related]
8. Application of deep learning image reconstruction in low-dose chest CT scan. Wang H; Li LL; Shang J; Song J; Liu B Br J Radiol; 2022 May; 95(1133):20210380. PubMed ID: 35084210 [TBL] [Abstract][Full Text] [Related]
9. Can 1.25 mm thin-section images generated with Deep Learning Image Reconstruction technique replace standard-of-care 5 mm images in abdominal CT? Cao J; Mroueh N; Pisuchpen N; Parakh A; Lennartz S; Pierce TT; Kambadakone AR Abdom Radiol (NY); 2023 Oct; 48(10):3253-3264. PubMed ID: 37369922 [TBL] [Abstract][Full Text] [Related]
10. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Hata A; Yanagawa M; Yoshida Y; Miyata T; Kikuchi N; Honda O; Tomiyama N Clin Radiol; 2021 Feb; 76(2):155.e15-155.e23. PubMed ID: 33220941 [TBL] [Abstract][Full Text] [Related]
11. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999 [TBL] [Abstract][Full Text] [Related]
12. Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis. Sun J; Li H; Li H; Li M; Gao Y; Zhou Z; Peng Y J Xray Sci Technol; 2022; 30(1):177-184. PubMed ID: 34806646 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Kim I; Kang H; Yoon HJ; Chung BM; Shin NY Neuroradiology; 2021 Jun; 63(6):905-912. PubMed ID: 33037503 [TBL] [Abstract][Full Text] [Related]
14. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305 [TBL] [Abstract][Full Text] [Related]
15. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers. Zhong J; Wang L; Shen H; Li J; Lu W; Shi X; Xing Y; Hu Y; Ge X; Ding D; Yan F; Du L; Yao W; Zhang H Eur Radiol; 2023 Aug; 33(8):5331-5343. PubMed ID: 36976337 [TBL] [Abstract][Full Text] [Related]
16. Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience. Jensen CT; Liu X; Tamm EP; Chandler AG; Sun J; Morani AC; Javadi S; Wagner-Bartak NA AJR Am J Roentgenol; 2020 Jul; 215(1):50-57. PubMed ID: 32286872 [No Abstract] [Full Text] [Related]
17. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. Yoon H; Kim J; Lim HJ; Lee MJ BMC Med Imaging; 2021 Oct; 21(1):146. PubMed ID: 34629049 [TBL] [Abstract][Full Text] [Related]
18. A feasibility study of realizing low-dose abdominal CT using deep learning image reconstruction algorithm. Li LL; Wang H; Song J; Shang J; Zhao XY; Liu B J Xray Sci Technol; 2021; 29(2):361-372. PubMed ID: 33612538 [TBL] [Abstract][Full Text] [Related]
19. Iterative reconstruction Qu T; Guo Y; Li J; Cao L; Li Y; Chen L; Sun J; Lu X; Guo J Br J Radiol; 2022 Dec; 95(1140):20220196. PubMed ID: 36341682 [TBL] [Abstract][Full Text] [Related]
20. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]