These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33555362)

  • 1. Metagenomic insights into the effect of sulfate on enhanced biological phosphorus removal.
    Matsuura N; Masakke Y; Karthikeyan S; Kanazawa S; Honda R; Yamamoto-Ikemoto R; Konstantinidis KT
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):2181-2193. PubMed ID: 33555362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial behaviours inside alternating anaerobic-anoxic environment of a sulfur cycle-driven EBPR system: A metagenomic investigation.
    Hao T; Lin Q; Ma J; Tang W; Xiao Y; Guo G
    Environ Res; 2022 Sep; 212(Pt C):113373. PubMed ID: 35526585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.
    Wu D; Ekama GA; Wang HG; Wei L; Lu H; Chui HK; Liu WT; Brdjanovic D; van Loosdrecht MC; Chen GH
    Water Res; 2014 Feb; 49():251-64. PubMed ID: 24342048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient removal and microbial community in a two-stage process: Simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) followed by anammox.
    Yuan C; Wang B; Peng Y; Hu T; Zhang Q; Li X
    Bioresour Technol; 2020 Aug; 310():123471. PubMed ID: 32388357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Wang H; Chen G
    Water Res; 2016 May; 95():289-99. PubMed ID: 27010789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis".
    Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A
    Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater.
    Wang HG; Huang H; Liu RL; Mao YP; Biswal BK; Chen GH; Wu D
    Water Res; 2019 Dec; 167():115138. PubMed ID: 31585382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J
    J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Chen G
    Water Res; 2017 Oct; 123():687-695. PubMed ID: 28715778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-sludge age EBPR process - Microbial and biochemical process characterisation during reactor start-up and operation.
    Valverde-Pérez B; Wágner DS; Lóránt B; Gülay A; Smets BF; Plósz BG
    Water Res; 2016 Nov; 104():320-329. PubMed ID: 27570133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review.
    Guo G; Ekama GA; Wang Y; Dai J; Biswal BK; Chen G; Wu D
    Bioresour Technol; 2019 Aug; 285():121303. PubMed ID: 30952535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics.
    Zhang Y; Hua ZS; Lu H; Oehmen A; Guo J
    Water Res; 2019 Jan; 148():219-230. PubMed ID: 30388523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.
    Guo G; Wu D; Ekama GA; Hao T; Mackey HR; Chen G
    Water Res; 2018 Sep; 141():9-18. PubMed ID: 29753976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and Metabolic Insights into Two Novel
    Mardanov AV; Gruzdev EV; Smolyakov DD; Rudenko TS; Beletsky AV; Gureeva MV; Markov ND; Berestovskaya YY; Pimenov NV; Ravin NV; Grabovich MY
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33353182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic analysis of the sludge microbial community in a lab-scale denitrifying phosphorus removal reactor.
    Lv XM; Shao MF; Li J; Li CL
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3258-70. PubMed ID: 25820294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age.
    Whang LM; Park JK
    Water Environ Res; 2006 Jan; 78(1):4-11. PubMed ID: 16553160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and population structure of two carbon sources granular enhanced biological phosphorus removal systems at low temperature.
    Wang S; Li Z; Wang D; Li Y; Sun L
    Bioresour Technol; 2020 Mar; 300():122683. PubMed ID: 31901772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Startup, stable operation and process failure of EBPR system under the low temperature and low dissolved oxygen condition].
    Ma J; Li L; Yu XJ; Wei XF; Liu JL
    Huan Jing Ke Xue; 2015 Feb; 36(2):597-603. PubMed ID: 26031088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of enhanced biological phosphorus removal and population dynamics of phosphorus accumulating organisms in sludge-shifting sequencing batch reactors.
    Pan Y; Ruan W; Huang Y; Chen Q; Miao H; Wang T
    Water Sci Technol; 2018 Sep; 78(3-4):886-895. PubMed ID: 30252666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: characteristics of carbon metabolism.
    Jeon CO; Lee DS; Park JM
    Water Environ Res; 2001; 73(3):295-300. PubMed ID: 11561588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.