BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33555380)

  • 21. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation.
    Wang Y; Wen Q; Chen Y; Yin J; Duan T
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1372-1385. PubMed ID: 27557903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells].
    Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH
    Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.
    Hou J; Liu Z; Li Y; Yang S; Zhou Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):881-8. PubMed ID: 25428842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on graphene / graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects.
    P A; Naina Mohamed S; Singaravelu DL; Brindhadevi K; Pugazhendhi A
    Chemosphere; 2022 Jun; 296():133983. PubMed ID: 35181417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material.
    Kalathil S; Van Nguyen H; Shim JJ; Khan MM; Lee J; Cho MH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7712-6. PubMed ID: 24245320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.
    Hindatu Y; Annuar MSM; Subramaniam R; Gumel AM
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):919-928. PubMed ID: 28341913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spraying carbon powder derived from mango wood biomass as high-performance anode in bio-electrochemical system.
    Li M; Li YW; Cai QY; Zhou SQ; Mo CH
    Bioresour Technol; 2020 Mar; 300():122623. PubMed ID: 31927344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Electricity generation by the microbial fuel cells using carbon nanotube as the anode].
    Liang P; Fan MZ; Cao XX; Huang X; Peng YM; Wang S; Gong QM; Liang J
    Huan Jing Ke Xue; 2008 Aug; 29(8):2356-60. PubMed ID: 18839600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe
    Xu H; Quan X; Chen L
    Chemosphere; 2019 Feb; 217():800-807. PubMed ID: 30458415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode.
    Zhong D; Liao X; Liu Y; Zhong N; Xu Y
    Bioresour Technol; 2018 Jun; 258():125-134. PubMed ID: 29524687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of power generation with concomitant removal of toluene from artificial groundwater using a mini microbial fuel cell with a packed-composite anode.
    Lin CW; Chen J; Zhao J; Liu SH; Lin LC
    J Hazard Mater; 2020 Apr; 387():121717. PubMed ID: 31767505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Treatment of PTA Wastewater by Modified Anode Microbial Fuel Cell].
    Sun JY; Fan MJ; Chen YW; Zhu SM; Shen SB
    Huan Jing Ke Xue; 2017 Jul; 38(7):2893-2900. PubMed ID: 29964630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifying Ti
    Yang J; Cheng S; Zhang S; Han W; Jin B
    Chemosphere; 2022 Feb; 288(Pt 2):132502. PubMed ID: 34626659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
    Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y
    Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.
    Jadhav DA; Ghadge AN; Ghangrekar MM
    Bioresour Technol; 2015 Sep; 191():110-6. PubMed ID: 25983229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of carbon felt anodes using double-oxidant HNO
    Zhao Y; Ma Y; Li T; Dong Z; Wang Y
    RSC Adv; 2018 Jan; 8(4):2059-2064. PubMed ID: 35542616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.
    Chen Q; Pu W; Hou H; Hu J; Liu B; Li J; Cheng K; Huang L; Yuan X; Yang C; Yang J
    Bioresour Technol; 2018 Feb; 249():567-573. PubMed ID: 29091839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.
    Penteado ED; Fernandez-Marchante CM; Zaiat M; Gonzalez ER; Rodrigo MA
    Environ Technol; 2017 Jun; 38(11):1333-1341. PubMed ID: 27603229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of procedures to acclimate a microbial fuel cell for electricity production.
    Kim JR; Min B; Logan BE
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):23-30. PubMed ID: 15647935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.