BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33555857)

  • 1. Versatile Lipases from the
    Rodríguez-Salarichs J; García de Lacoba M; Prieto A; Martínez MJ; Barriuso J
    J Chem Inf Model; 2021 Feb; 61(2):913-920. PubMed ID: 33555857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: comparison with other enzymes of the Candida rugosa-like family.
    Vaquero ME; Prieto A; Barriuso J; Martínez MJ
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10057-67. PubMed ID: 26272094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the Activity of a Fungal Versatile-Lipase Toward Triglycerides: An
    Payá-Tormo L; Rodríguez-Salarichs J; Prieto A; Martínez MJ; Barriuso J
    Front Bioeng Biotechnol; 2019; 7():71. PubMed ID: 30984756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts.
    Barriuso J; Prieto A; Martínez MJ
    BMC Genomics; 2013 Oct; 14():712. PubMed ID: 24138290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review.
    Barriuso J; Vaquero ME; Prieto A; Martínez MJ
    Biotechnol Adv; 2016; 34(5):874-885. PubMed ID: 27188926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of a sterol esterase secreted by Ophiostoma piceae: sequence, model and biochemical properties.
    Calero-Rueda O; Barba V; Rodríguez E; Plou F; Martínez AT; Martínez MJ
    Biochim Biophys Acta; 2009 Jul; 1794(7):1099-106. PubMed ID: 19281875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.
    Gutiérrez-Fernández J; Vaquero ME; Prieto A; Barriuso J; Martínez MJ; Hermoso JA
    J Struct Biol; 2014 Sep; 187(3):215-222. PubMed ID: 25108239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes.
    Brocca S; Secundo F; Ossola M; Alberghina L; Carrea G; Lotti M
    Protein Sci; 2003 Oct; 12(10):2312-9. PubMed ID: 14500889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production, isolation and characterization of a sterol esterase from Ophiostoma piceae.
    Calero-Rueda O; Plou FJ; Ballesteros A; Martínez AT; Martínez MJ
    Biochim Biophys Acta; 2002 Sep; 1599(1-2):28-35. PubMed ID: 12479402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties, structure, and applications of microbial sterol esterases.
    Vaquero ME; Barriuso J; Martínez MJ; Prieto A
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2047-61. PubMed ID: 26743653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution.
    Mancheño JM; Pernas MA; Martínez MJ; Ochoa B; Rúa ML; Hermoso JA
    J Mol Biol; 2003 Oct; 332(5):1059-69. PubMed ID: 14499609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae.
    Molina-Gutiérrez M; Hakalin NLS; Rodríguez-Sanchez L; Prieto A; Martínez MJ
    Food Chem; 2017 Apr; 221():1458-1465. PubMed ID: 27979115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris.
    Cedillo VB; Plou FJ; Martínez MJ
    Microb Cell Fact; 2012 Jun; 11():73. PubMed ID: 22676486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy of lipase binding sites: the scissile fatty acid binding site.
    Pleiss J; Fischer M; Schmid RD
    Chem Phys Lipids; 1998 Jun; 93(1-2):67-80. PubMed ID: 9720251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.
    Redondo O; Herrero A; Bello JF; Roig MG; Calvo MV; Plou FJ; Burguillo FJ
    Biochim Biophys Acta; 1995 Jan; 1243(1):15-24. PubMed ID: 7827103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase.
    Ghosh D; Wawrzak Z; Pletnev VZ; Li N; Kaiser R; Pangborn W; Jörnvall H; Erman M; Duax WL
    Structure; 1995 Mar; 3(3):279-88. PubMed ID: 7788294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases.
    Chahinian H; Ali YB; Abousalham A; Petry S; Mandrich L; Manco G; Canaan S; Sarda L
    Biochim Biophys Acta; 2005 Dec; 1738(1-3):29-36. PubMed ID: 16325466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotenol fatty acid esters: easy substrates for digestive enzymes?
    Breithaupt DE; Bamedi A; Wirt U
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Aug; 132(4):721-8. PubMed ID: 12128058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.