BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33555859)

  • 1. Macrolide Biosensor Optimization through Cellular Substrate Sequestration.
    Miller CA; Ho JM; Parks SE; Bennett MR
    ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Evolution, and Characterization of a Xylose Biosensor in
    Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW
    ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation.
    Feng T; Zhang Y; Ding JN; Fan S; Han JG
    J Comput Aided Mol Des; 2015 Dec; 29(12):1123-36. PubMed ID: 26564143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the macrolide biosensor protein, MphR(A), with and without erythromycin.
    Zheng J; Sagar V; Smolinsky A; Bourke C; LaRonde-LeBlanc N; Cropp TA
    J Mol Biol; 2009 Apr; 387(5):1250-60. PubMed ID: 19265703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite.
    Seok JY; Han YH; Yang JS; Yang J; Lim HG; Kim SG; Seo SW; Jung GY
    Cell Rep; 2021 Aug; 36(8):109589. PubMed ID: 34433019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology.
    Ding N; Zhou S; Deng Y
    ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors.
    Hartline CJ; Zhang F
    ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis.
    Dietrich JA; Shis DL; Alikhani A; Keasling JD
    ACS Synth Biol; 2013 Jan; 2(1):47-58. PubMed ID: 23656325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology.
    Kasey CM; Zerrad M; Li Y; Cropp TA; Williams GJ
    ACS Synth Biol; 2018 Jan; 7(1):227-239. PubMed ID: 28950701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli.
    Christen EH; Karlsson M; Kämpf MM; Weber CC; Fussenegger M; Weber W
    Protein Expr Purif; 2009 Aug; 66(2):158-64. PubMed ID: 19324091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR.
    Tao HC; Peng ZW; Li PS; Yu TA; Su J
    Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Cell-Free Biosensors to Monitor Enzymatic Production.
    Pandi A; Grigoras I; Borkowski O; Faulon JL
    ACS Synth Biol; 2019 Aug; 8(8):1952-1957. PubMed ID: 31335131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.
    Mannan AA; Liu D; Zhang F; Oyarzún DA
    ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of the Lrp/AsnC-type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L-cysteine biosynthesis pathway in Escherichia coli.
    Zhou Z; Li Z; Zhong Y; Xu S; Li Z
    Biotechnol Bioeng; 2024 Jul; 121(7):2133-2146. PubMed ID: 38634289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.
    Younger AK; Dalvie NC; Rottinghaus AG; Leonard JN
    ACS Synth Biol; 2017 Feb; 6(2):311-325. PubMed ID: 27744683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Transcription Factor-Based Lactam Biosensor.
    Zhang J; Barajas JF; Burdu M; Ruegg TL; Dias B; Keasling JD
    ACS Synth Biol; 2017 Mar; 6(3):439-445. PubMed ID: 27997130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system.
    Cheng Y; Yang S; Jia M; Zhao L; Hou C; You X; Zhao J; Chen A
    Anal Bioanal Chem; 2016 Feb; 408(6):1623-31. PubMed ID: 26753969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering.
    Verma BK; Mannan AA; Zhang F; Oyarzún DA
    ACS Synth Biol; 2022 Jan; 11(1):228-240. PubMed ID: 34968029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics.
    Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M
    ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.