These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 33555859)
1. Macrolide Biosensor Optimization through Cellular Substrate Sequestration. Miller CA; Ho JM; Parks SE; Bennett MR ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859 [TBL] [Abstract][Full Text] [Related]
2. Design, Evolution, and Characterization of a Xylose Biosensor in Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884 [TBL] [Abstract][Full Text] [Related]
3. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation. Feng T; Zhang Y; Ding JN; Fan S; Han JG J Comput Aided Mol Des; 2015 Dec; 29(12):1123-36. PubMed ID: 26564143 [TBL] [Abstract][Full Text] [Related]
4. Structure and function of the macrolide biosensor protein, MphR(A), with and without erythromycin. Zheng J; Sagar V; Smolinsky A; Bourke C; LaRonde-LeBlanc N; Cropp TA J Mol Biol; 2009 Apr; 387(5):1250-60. PubMed ID: 19265703 [TBL] [Abstract][Full Text] [Related]
5. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Seok JY; Han YH; Yang JS; Yang J; Lim HG; Kim SG; Seo SW; Jung GY Cell Rep; 2021 Aug; 36(8):109589. PubMed ID: 34433019 [TBL] [Abstract][Full Text] [Related]
6. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. Ding N; Zhou S; Deng Y ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477 [TBL] [Abstract][Full Text] [Related]
7. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors. Hartline CJ; Zhang F ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119 [TBL] [Abstract][Full Text] [Related]
8. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology. Kasey CM; Zerrad M; Li Y; Cropp TA; Williams GJ ACS Synth Biol; 2018 Jan; 7(1):227-239. PubMed ID: 28950701 [TBL] [Abstract][Full Text] [Related]
9. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli. Christen EH; Karlsson M; Kämpf MM; Weber CC; Fussenegger M; Weber W Protein Expr Purif; 2009 Aug; 66(2):158-64. PubMed ID: 19324091 [TBL] [Abstract][Full Text] [Related]
10. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Tao HC; Peng ZW; Li PS; Yu TA; Su J Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235 [TBL] [Abstract][Full Text] [Related]
13. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors. Mannan AA; Liu D; Zhang F; Oyarzún DA ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198 [TBL] [Abstract][Full Text] [Related]
14. Engineering of the Lrp/AsnC-type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L-cysteine biosynthesis pathway in Escherichia coli. Zhou Z; Li Z; Zhong Y; Xu S; Li Z Biotechnol Bioeng; 2024 Jul; 121(7):2133-2146. PubMed ID: 38634289 [TBL] [Abstract][Full Text] [Related]
16. Development of a Transcription Factor-Based Lactam Biosensor. Zhang J; Barajas JF; Burdu M; Ruegg TL; Dias B; Keasling JD ACS Synth Biol; 2017 Mar; 6(3):439-445. PubMed ID: 27997130 [TBL] [Abstract][Full Text] [Related]
17. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. Cheng Y; Yang S; Jia M; Zhao L; Hou C; You X; Zhao J; Chen A Anal Bioanal Chem; 2016 Feb; 408(6):1623-31. PubMed ID: 26753969 [TBL] [Abstract][Full Text] [Related]
18. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering. Verma BK; Mannan AA; Zhang F; Oyarzún DA ACS Synth Biol; 2022 Jan; 11(1):228-240. PubMed ID: 34968029 [TBL] [Abstract][Full Text] [Related]
19. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Chen XF; Xia XX; Lee SY; Qian ZG Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347 [TBL] [Abstract][Full Text] [Related]
20. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics. Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]