BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33556016)

  • 1. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue.
    Li M; Konstantinova J; Secco EL; Jiang A; Liu H; Nanayakkara T; Seneviratne LD; Dasgupta P; Althoefer K; Wurdemann HA
    Med Biol Eng Comput; 2015 Nov; 53(11):1177-86. PubMed ID: 26018755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-Inspired Haptic Feedback for Artificial Palpation in Robotic Surgery.
    Ouyang Q; Wu J; Sun S; Pensa J; Abiri A; Dutson E; Bisley J
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3184-3193. PubMed ID: 33905321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing Limits of Vision-Based Force Feedback in Simulated Surgical Tool-Tissue Interaction.
    Huang K; Chitrakar D; Mitra R; Subedi D; Su YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4903-4908. PubMed ID: 33019088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and mechanisms for contact feedback in a robot-assisted minimally invasive environment.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Surg Endosc; 2006 Oct; 20(10):1570-9. PubMed ID: 16897288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-silicone bilateral soft physical twin as an alternative to traditional user interfaces for remote palpation: a comparative study.
    Costi L; Iida F
    Sci Rep; 2023 Dec; 13(1):23014. PubMed ID: 38155254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
    Pacchierotti C; Prattichizzo D; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):278-87. PubMed ID: 26186763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Sensor for Tissue Mechanical Property Detection During Robotic Surgery.
    Sun S; Dutson EP; Geoghegan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4834-4838. PubMed ID: 36086573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reviewing the technological challenges associated with the development of a laparoscopic palpation device.
    Culmer P; Barrie J; Hewson R; Levesley M; Mon-Williams M; Jayne D; Neville A
    Int J Med Robot; 2012 Jun; 8(2):146-59. PubMed ID: 22351567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. W-FYD: A Wearable Fabric-Based Display for Haptic Multi-Cue Delivery and Tactile Augmented Reality.
    Fani S; Ciotti S; Battaglia E; Moscatelli A; Bianchi M
    IEEE Trans Haptics; 2018; 11(2):304-316. PubMed ID: 28796622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.