BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33556016)

  • 21. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery--experimental performance evaluation.
    Rosen J; Hannaford B; MacFarlane MP; Sinanan MN
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1212-21. PubMed ID: 10513126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation.
    Sühn T; Esmaeili N; Mattepu SY; Spiller M; Boese A; Urrutia R; Poblete V; Hansen C; Lohmann CH; Illanes A; Friebe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks.
    Saracino A; Deguet A; Staderini F; Boushaki MN; Cianchi F; Menciassi A; Sinibaldi E
    Int J Med Robot; 2019 Aug; 15(4):e1999. PubMed ID: 30970387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.
    Chua Z; Okamura AM
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prototype tactile feedback system for examination by skin touch.
    Lee O; Lee K; Oh C; Kim K; Kim M
    Skin Res Technol; 2014 Aug; 20(3):307-14. PubMed ID: 24267404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable haptic interfaces for applications in gynecologic robotic surgery: a proof of concept in robotic myomectomy.
    Giannini A; Bianchi M; Doria D; Fani S; Caretto M; Bicchi A; Simoncini T
    J Robot Surg; 2019 Aug; 13(4):585-588. PubMed ID: 31062181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery.
    Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Survey on Force Sensing Techniques in Robot-Assisted Minimally Invasive Surgery.
    Wang W; Wang J; Luo Y; Wang X; Song H
    IEEE Trans Haptics; 2023; 16(4):702-718. PubMed ID: 37922188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Texture differentiation using audio signal analysis with robotic interventional instruments.
    Chen CH; Sühn T; Kalmar M; Maldonado I; Wex C; Croner R; Boese A; Friebe M; Illanes A
    Comput Biol Med; 2019 Sep; 112():103370. PubMed ID: 31374348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.