These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33556210)
1. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210 [TBL] [Abstract][Full Text] [Related]
2. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717 [TBL] [Abstract][Full Text] [Related]
3. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies. Wang J; Li J; Yu J; Zhang H; Zhang B ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899 [TBL] [Abstract][Full Text] [Related]
4. Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Wu M; Wu L; Li J; Zhang D; Lan S; Zhang X; Lin X; Liu G; Liu X; Liu J Theranostics; 2019; 9(1):20-33. PubMed ID: 30662551 [TBL] [Abstract][Full Text] [Related]
5. Single-Component Photochemical Afterglow Near-Infrared Luminescent Nano-Photosensitizers: Bioimaging and Photodynamic Therapy. Li Y; He D; Zheng Q; Tang R; Wan Q; Tang BZ; Wang Z Adv Healthc Mater; 2024 May; 13(13):e2304392. PubMed ID: 38335277 [TBL] [Abstract][Full Text] [Related]
6. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699 [TBL] [Abstract][Full Text] [Related]
7. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Xia Q; Chen Z; Zhou Y; Liu R Nanotheranostics; 2019; 3(2):156-165. PubMed ID: 31008024 [TBL] [Abstract][Full Text] [Related]
8. Sharp pH-sensitive amphiphilic polypeptide macrophotosensitizer for near infrared imaging-guided photodynamic therapy. Yuan P; Ruan Z; Li T; Tian Y; Cheng Q; Yan L Nanomedicine; 2019 Jan; 15(1):198-207. PubMed ID: 30316904 [TBL] [Abstract][Full Text] [Related]
9. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared rechargeable "optical battery" implant for irradiation-free photodynamic therapy. Hu L; Wang P; Zhao M; Liu L; Zhou L; Li B; Albaqami FH; El-Toni AM; Li X; Xie Y; Sun X; Zhang F Biomaterials; 2018 May; 163():154-162. PubMed ID: 29459324 [TBL] [Abstract][Full Text] [Related]
11. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy. Liu L; Fu L; Jing T; Ruan Z; Yan L ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730 [TBL] [Abstract][Full Text] [Related]
12. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Abdurahman R; Yang CX; Yan XP Chem Commun (Camb); 2016 Nov; 52(90):13303-13306. PubMed ID: 27782263 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy. Fan W; Lu N; Xu C; Liu Y; Lin J; Wang S; Shen Z; Yang Z; Qu J; Wang T; Chen S; Huang P; Chen X ACS Nano; 2017 Jun; 11(6):5864-5872. PubMed ID: 28537714 [TBL] [Abstract][Full Text] [Related]
14. Photostable Iridium(III)-Cyanine Complex Nanoparticles for Photoacoustic Imaging Guided Near-Infrared Photodynamic Therapy in Vivo. Yang Q; Jin H; Gao Y; Lin J; Yang H; Yang S ACS Appl Mater Interfaces; 2019 May; 11(17):15417-15425. PubMed ID: 30964627 [TBL] [Abstract][Full Text] [Related]
15. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Sun SK; Wang HF; Yan XP Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602 [TBL] [Abstract][Full Text] [Related]
16. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. Dai J; Li Y; Long Z; Jiang R; Zhuang Z; Wang Z; Zhao Z; Lou X; Xia F; Tang BZ ACS Nano; 2020 Jan; 14(1):854-866. PubMed ID: 31820925 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. Zhuang W; Yang L; Ma B; Kong Q; Li G; Wang Y; Tang BZ ACS Appl Mater Interfaces; 2019 Jun; 11(23):20715-20724. PubMed ID: 31144501 [TBL] [Abstract][Full Text] [Related]
18. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy. Wu W; Mao D; Hu F; Xu S; Chen C; Zhang CJ; Cheng X; Yuan Y; Ding D; Kong D; Liu B Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671732 [TBL] [Abstract][Full Text] [Related]
19. Energy transfer facilitated near infrared fluorescence imaging and photodynamic therapy of tumors. Wang Y; Sun X; Chang Y; Zhang H Biomater Sci; 2021 Jul; 9(13):4662-4670. PubMed ID: 34008599 [TBL] [Abstract][Full Text] [Related]
20. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Xue M; Zhao J; Zhan Z; Zhao S; Lan C; Ye F; Liang H Nanoscale; 2018 Oct; 10(38):18124-18130. PubMed ID: 30255925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]