BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33556260)

  • 1. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using
    Anyasi RO; Atagana HI
    Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.
    Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.
    Atagana HI
    Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by
    Jampasri K; Pokethitiyook P; Poolpak T; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2020; 22(3):322-333. PubMed ID: 31505941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of
    Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M
    Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media.
    Saeng-Ngam S; Jampasri K
    Bull Environ Contam Toxicol; 2022 Apr; 108(4):762-767. PubMed ID: 34997262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil.
    Salimizadeh M; Shirvani M; Shariatmadari H; Nikaeen M; Leili Mohebi Nozar S
    Int J Phytoremediation; 2018 Jun; 20(7):658-665. PubMed ID: 29723054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments.
    Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S
    Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect.
    Chekol T; Vough LR; Chaney RL
    Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel technology of solarization and phytoremediation enhanced with biosurfactant for the sustainable treatment of PAH-contaminated soil.
    Futughe AE; Jones H; Purchase D
    Environ Geochem Health; 2023 Jun; 45(6):3847-3863. PubMed ID: 36593376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock.
    Wang Y; Wu Q; Duan D; Ruan R; Liu Y; Dai L; Zhou Y; Zhao Y; Zhang S; Zeng Z; Jiang L; Yu Z
    Bioresour Technol; 2018 Aug; 261():306-312. PubMed ID: 29677658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson].
    Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R
    Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance of
    Ayesa SA; Chukwuka KS; Odeyemi OO
    Toxicol Rep; 2018; 5():1134-1139. PubMed ID: 30479969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands.
    Palma-Cruz Fde J; Pérez-Vargas J; Rivera Casado NA; Gómez Guzmán O; Calva-Calva G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16359-71. PubMed ID: 27164872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of pyrrolizidine alkaloids in the tissues of maize (Zea mays L.) plants from the soil of a 4-year-old Chromolaena odorata dominated fallow farmland.
    Letsyo E; Adams ZS; Dzikunoo J; Asante-Donyinah D
    Chemosphere; 2021 May; 270():128669. PubMed ID: 33097231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between root growth of Zinnia hybrid "profusion orange" flowers and phytoremediation of oil-contaminated soil.
    Ikeura H; Fukunaga S; Uchida N; Tamaki M
    Int J Phytoremediation; 2019; 21(4):287-292. PubMed ID: 30648412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of plants at petroleum contaminated site for phytoremediation.
    Anyasi RO; Atagana HI
    Int J Phytoremediation; 2018 Mar; 20(4):352-361. PubMed ID: 29584469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of
    Salimizadeh M; Shirvani M; Shariatmadari H; Mortazavi MS
    Int J Phytoremediation; 2020; 22(2):176-183. PubMed ID: 31424289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator.
    Siripan O; Thamchaipenet A; Surat W
    Int J Phytoremediation; 2018 Sep; 20(11):1096-1105. PubMed ID: 30156919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of PCB: contaminated Algerian soils using native agronomics plants.
    Halfadji A; Portet-Koltalo F; Touabet A; Le Derf F; Morin C; Merlet-Machour N
    Environ Geochem Health; 2022 Jan; 44(1):117-132. PubMed ID: 34355306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.