These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33556260)
1. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using Anyasi RO; Atagana HI Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380 [TBL] [Abstract][Full Text] [Related]
3. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions. Atagana HI Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491 [TBL] [Abstract][Full Text] [Related]
4. Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by Jampasri K; Pokethitiyook P; Poolpak T; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2020; 22(3):322-333. PubMed ID: 31505941 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation potential of Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846 [TBL] [Abstract][Full Text] [Related]
6. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media. Saeng-Ngam S; Jampasri K Bull Environ Contam Toxicol; 2022 Apr; 108(4):762-767. PubMed ID: 34997262 [TBL] [Abstract][Full Text] [Related]
7. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil. Salimizadeh M; Shirvani M; Shariatmadari H; Nikaeen M; Leili Mohebi Nozar S Int J Phytoremediation; 2018 Jun; 20(7):658-665. PubMed ID: 29723054 [TBL] [Abstract][Full Text] [Related]
8. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Chekol T; Vough LR; Chaney RL Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198 [TBL] [Abstract][Full Text] [Related]
10. A novel technology of solarization and phytoremediation enhanced with biosurfactant for the sustainable treatment of PAH-contaminated soil. Futughe AE; Jones H; Purchase D Environ Geochem Health; 2023 Jun; 45(6):3847-3863. PubMed ID: 36593376 [TBL] [Abstract][Full Text] [Related]
11. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock. Wang Y; Wu Q; Duan D; Ruan R; Liu Y; Dai L; Zhou Y; Zhao Y; Zhang S; Zeng Z; Jiang L; Yu Z Bioresour Technol; 2018 Aug; 261():306-312. PubMed ID: 29677658 [TBL] [Abstract][Full Text] [Related]
12. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands. Palma-Cruz Fde J; Pérez-Vargas J; Rivera Casado NA; Gómez Guzmán O; Calva-Calva G Environ Sci Pollut Res Int; 2016 Aug; 23(16):16359-71. PubMed ID: 27164872 [TBL] [Abstract][Full Text] [Related]
15. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. Yuan C; Gao J; Huang L; Jian S Sci Total Environ; 2024 Nov; 950():175196. PubMed ID: 39097027 [TBL] [Abstract][Full Text] [Related]
16. Uptake and accumulation of pyrrolizidine alkaloids in the tissues of maize (Zea mays L.) plants from the soil of a 4-year-old Chromolaena odorata dominated fallow farmland. Letsyo E; Adams ZS; Dzikunoo J; Asante-Donyinah D Chemosphere; 2021 May; 270():128669. PubMed ID: 33097231 [TBL] [Abstract][Full Text] [Related]
17. Relationships between root growth of Zinnia hybrid "profusion orange" flowers and phytoremediation of oil-contaminated soil. Ikeura H; Fukunaga S; Uchida N; Tamaki M Int J Phytoremediation; 2019; 21(4):287-292. PubMed ID: 30648412 [TBL] [Abstract][Full Text] [Related]
18. Profiling of plants at petroleum contaminated site for phytoremediation. Anyasi RO; Atagana HI Int J Phytoremediation; 2018 Mar; 20(4):352-361. PubMed ID: 29584469 [TBL] [Abstract][Full Text] [Related]
19. Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of Salimizadeh M; Shirvani M; Shariatmadari H; Mortazavi MS Int J Phytoremediation; 2020; 22(2):176-183. PubMed ID: 31424289 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Siripan O; Thamchaipenet A; Surat W Int J Phytoremediation; 2018 Sep; 20(11):1096-1105. PubMed ID: 30156919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]