BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33556398)

  • 1. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids.
    Kaur H; Bari NK; Garg A; Sinha S
    Int J Biol Macromol; 2021 Apr; 176():106-116. PubMed ID: 33556398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-directed assembly of cobalt phosphate hybrid nanoflowers.
    Kim KH; Jeong JM; Lee SJ; Choi BG; Lee KG
    J Colloid Interface Sci; 2016 Dec; 484():44-50. PubMed ID: 27585999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification.
    Yu Y; Fei X; Tian J; Xu L; Wang X; Wang Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():299-304. PubMed ID: 25935264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions.
    Huang Y; Ran X; Lin Y; Ren J; Qu X
    Chem Commun (Camb); 2015 Mar; 51(21):4386-9. PubMed ID: 25676383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced DNA nuclease activity of Momordica charantia lectin by biomimetic mineralization as hybrid copper phosphate nanoflowers and as zeolitic imidazole frameworks.
    Polepalli S; Rao CP
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1925-1935. PubMed ID: 36206839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational modifications of serum albumins adsorbed on different kinds of biomimetic hydroxyapatite nanocrystals.
    Iafisco M; Sabatino P; Lesci IG; Prat M; Rimondini L; Roveri N
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):274-84. PubMed ID: 20692819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.
    Zhai H; Chu X; Li L; Xu X; Tang R
    Nanoscale; 2010 Nov; 2(11):2456-62. PubMed ID: 20944837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.
    Altinkaynak C; Kocazorbaz E; Özdemir N; Zihnioglu F
    Int J Biol Macromol; 2018 Apr; 109():205-211. PubMed ID: 29253544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis.
    Jiang W; Wang X; Yang J; Han H; Li Q; Tang J
    J Colloid Interface Sci; 2018 Mar; 514():102-107. PubMed ID: 29247821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-inorganic hybrid nanoflowers.
    Ge J; Lei J; Zare RN
    Nat Nanotechnol; 2012 Jun; 7(7):428-32. PubMed ID: 22659609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D flower-like ferrous(II) phosphate nanostructures as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose at nanomolar level.
    Guo J; Wang Y; Zhao M
    Talanta; 2018 May; 182():230-240. PubMed ID: 29501146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Stable and Catalytically Active Coatings Based on Self-Assembly of Protein-Inorganic Nanoflowers on Plasma-Electrolyzed Platform.
    Kamil MP; Ko YG
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39854-39867. PubMed ID: 34387478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired synthesis of organic-inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay.
    Tang Q; Zhang L; Tan X; Jiao L; Wei Q; Li H
    Biosens Bioelectron; 2019 May; 133():94-99. PubMed ID: 30913510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme Mimic Based on a Self-Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance.
    Wang ZG; Li Y; Wang H; Wan K; Liu Q; Shi X; Ding B
    Chemistry; 2019 Sep; 25(54):12576-12582. PubMed ID: 31314132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Major Shell Protein of 1,2-Propanediol Utilization Microcompartment Conserves the Activity of Its Signature Enzyme at Higher Temperatures.
    Kumar G; Bari NK; Hazra JP; Sinha S
    Chembiochem; 2022 May; 23(9):e202100694. PubMed ID: 35229962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities.
    Koca FD; Demirezen Yilmaz D; Ertas Onmaz N; Yilmaz E; Ocsoy I
    Biotechnol Lett; 2020 Sep; 42(9):1683-1690. PubMed ID: 32239349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.
    Yilmaz E; Ocsoy I; Ozdemir N; Soylak M
    Anal Chim Acta; 2016 Feb; 906():110-117. PubMed ID: 26772130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of shell protein and native enzyme in a crowded environment leads to catalytically active phase condensates.
    Kumar G; Sinha S
    Biochem J; 2023 Apr; 480(8):539-553. PubMed ID: 36688417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.