These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 33556401)
1. Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. Vimalraj S; Yuvashree R; Hariprabu G; Subramanian R; Murali P; Veeraiyan DN; Thangavelu L Int J Biol Macromol; 2021 Apr; 175():379-395. PubMed ID: 33556401 [TBL] [Abstract][Full Text] [Related]
2. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Preethi Soundarya S; Haritha Menon A; Viji Chandran S; Selvamurugan N Int J Biol Macromol; 2018 Nov; 119():1228-1239. PubMed ID: 30107161 [TBL] [Abstract][Full Text] [Related]
3. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
4. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
5. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects. Fernández MP; Witte F; Tozzi G J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530 [TBL] [Abstract][Full Text] [Related]
6. Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method. Danilchenko SN; Kalinkevich OV; Pogorelov MV; Kalinkevich AN; Sklyar AM; Kalinichenko TG; Ilyashenko VY; Starikov VV; Bumeyster VI; Sikora VZ; Sukhodub LF J Biomed Mater Res A; 2011 Mar; 96(4):639-47. PubMed ID: 21268238 [TBL] [Abstract][Full Text] [Related]
7. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration. Chandramohan Y; Jeganathan K; Sivanesan S; Koka P; Amritha TMS; Vimalraj S; Dhanasekaran A Life Sci; 2021 Jan; 264():118502. PubMed ID: 33031825 [TBL] [Abstract][Full Text] [Related]
8. [Research progress on chitosan composite scaffolds in bone tissue engineering]. Ding XX; Zhou YM; Xiang XC; Meng L; Qin Q; Ye S Hua Xi Kou Qiang Yi Xue Za Zhi; 2018 Aug; 36(4):441-446. PubMed ID: 30182574 [TBL] [Abstract][Full Text] [Related]
9. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Ranganathan S; Balagangadharan K; Selvamurugan N Int J Biol Macromol; 2019 Jul; 133():354-364. PubMed ID: 31002907 [TBL] [Abstract][Full Text] [Related]
10. Scaffolds based bone tissue engineering: the role of chitosan. Costa-Pinto AR; Reis RL; Neves NM Tissue Eng Part B Rev; 2011 Oct; 17(5):331-47. PubMed ID: 21810029 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. Deng H; Guan Y; Dong Q; An R; Wang J J Mater Chem B; 2024 Aug; 12(31):7480-7496. PubMed ID: 39016095 [TBL] [Abstract][Full Text] [Related]
12. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Huang H; Zhang X; Hu X; Shao Z; Zhu J; Dai L; Man Z; Yuan L; Chen H; Zhou C; Ao Y Biomaterials; 2014 Dec; 35(36):9608-19. PubMed ID: 25176065 [TBL] [Abstract][Full Text] [Related]
13. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering. Li JJ; Ebied M; Xu J; Zreiqat H Adv Healthc Mater; 2018 Mar; 7(6):e1701061. PubMed ID: 29280321 [TBL] [Abstract][Full Text] [Related]
14. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
15. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833 [TBL] [Abstract][Full Text] [Related]
16. Bio-Functionalized Chitosan for Bone Tissue Engineering. Brun P; Zamuner A; Battocchio C; Cassari L; Todesco M; Graziani V; Iucci G; Marsotto M; Tortora L; Secchi V; Dettin M Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072888 [TBL] [Abstract][Full Text] [Related]
17. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825 [TBL] [Abstract][Full Text] [Related]
18. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Ribeiro JCV; Vieira RS; Melo IM; Araújo VMA; Lima V ScientificWorldJournal; 2017; 2017():8639898. PubMed ID: 28567441 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181 [TBL] [Abstract][Full Text] [Related]
20. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]